Pharmaceutical companies conduct clinical trials for many reasons. The most obvious goal of clinical trials is to demonstrate safety and efficacy to gain Food and Drug Administration (FDA) approval. FDA provides guidance to developers about what constitutes acceptable clinical trials and appropriate outcomes. Improving the drug development process, especially by conducting better (meaning providing more information on safety or efficacy) and faster clinical trials, can foster innovation in medical product development.
The primary purposes of this study: 1) to better understand sponsors' strategies in the design and execution of clinical trials, 2) to identify factors that may delay, hinder, or lead to unsuccessfully completed trials, and 3) to develop an operational model of clinical trial decision-making to enable examination of what-if scenarios by end-users.
This study models the decision-making process for a drug sponsor as a stylized decision tree that looks at the process for formulating a clinical trial from the point of view of an expected-revenue-maximizing sponsor in the face of uncertainty (or risk). The simplified clinical decision-making model incorporates the following considerations:
* Therapeutic area
* Potential market size/revenues for the drug
* Clinical stage
* Success probabilities by clinical stage
In addition to identifying the costs of the clinical trials, the following barrier mitigation strategies were analyzed:
* Use of electronic health records (EHR)
* Looser trial enrollment restrictions
* Simplified clinical trial protocols and reduced amendments
* Reduced source data verification (SDV)
* Wider use of mobile technologies, including electronic data capture (EDC)
* Use of lower-cost facilities or at-home testing
* Priority Review/Priority Review vouchers
* Improvements in FDA review process efficiency and more frequent and timely interactions with FDA
Overall, the therapeutic area with the highest clinical research burden across all phases is respiratory system ($115.3 million) followed by pain and anesthesia ($105.4 million) and oncology ($78.6 million) trials. Use of lower-cost facilities/in-home testing and wider use of mobile technologies appear to be most effective in reducing costs across therapeutic areas and trial phases. Use of lower-cost facilities and/or in-home testing can reduce per-trial costs by up to $0.8 million (16 percent) in Phase 1, $4.3 million (22 percent) in Phase 2, and $9.1 million (17 percent) in Phase 3, depending on therapeutic area.