
Clinical Language Engineering 
Workbench (CLEW) 

Technical Report 

  

August 2019 
  

  



 1 

Contents 

CLEW Team Members ................................................................................................................... 4 

List of Abbreviations ...................................................................................................................... 5 

Overview of Report......................................................................................................................... 6 

1 Project Objectives ................................................................................................................... 7 

2 Background and Significance of Pilot User Systems ............................................................. 8 

3 Introduction to Natural Language Engineering (NLE) ......................................................... 10 

4 Building an NLE Service Application .................................................................................. 12 

4.1 The Importance of Accuracy .......................................................................................... 12 

4.2 The NLE Pipeline Architecture ...................................................................................... 12 

4.3 Rule-Based Modeling ..................................................................................................... 14 

4.4 Statistical NLP (SNLP) Modeling .................................................................................. 15 

5 Specifications for the CLEW ................................................................................................ 17 

6 A Practical Way Forward...................................................................................................... 18 

6.1 The Architecture of a Language Engineering Production Line Incorporating SNLP 
Methods .......................................................................................................................... 18 

6.2 Using the Service ............................................................................................................ 19 

7 CLEW Architectural Design ................................................................................................. 19 

7.1 Leveraging the Environmental Scan .............................................................................. 19 

7.2 Users - Key Competencies Assumed Knowledge .......................................................... 19 

7.3 The Architecture ............................................................................................................. 20 

7.4 Security and Protection of Personally Identifiable Information (PII) ............................ 21 

7.5 Governance and Administrative Oversight .................................................................... 21 

7.6 Tools Catalogue .............................................................................................................. 22 

7.7 NLP Services Catalogue ................................................................................................. 23 

7.8 NLP Feature Library ....................................................................................................... 23 

7.9 Data Exchange Formats .................................................................................................. 24 

7.10 CLEW Instance of the LAPPS Grid ............................................................................... 26 

8 Pilot Use Cases to Demonstrate Use of the CLEW .............................................................. 27 

8.1 Safety Surveillance Use Cases ....................................................................................... 28 

8.2 Cancer Pathology Use Cases .......................................................................................... 30 



 2 

9 Categories and Components ................................................................................................. 31 

9.1 Integrated Tools and Services ........................................................................................ 33 

9.2 Future Expansion of Tools as Services .......................................................................... 33 

10 Example NLP Pipelines ........................................................................................................ 35 

11 Discussion ............................................................................................................................. 35 

Acknowledgements ....................................................................................................................... 36 

References ..................................................................................................................................... 37 

Appendix A: UIMA Framework ................................................................................................... 38 

Appendix B: The VAERS Data Type System .............................................................................. 40 

Appendix C: Lessons Learned Working with cTAKES ............................................................... 42 

Appendix D: Environmental Scan List of Tools........................................................................... 43 

Appendix E: Cancer Pathology Pilot Project ................................................................................ 45 

E.1 Services ........................................................................................................................... 45 

E.2 Identified Semantics ....................................................................................................... 45 

E.3 Approach to Address the Use Case ................................................................................ 45 

E.4 Cancer Pathology Demonstration ................................................................................... 45 

E.5 Sample Cancer Pathology Demonstration Using Stanford Pipeline .............................. 47 

Appendix F: eMaRC Plus ............................................................................................................. 50 

F.1 Scope .............................................................................................................................. 50 

F.2 Description of System Enhancements ............................................................................ 50 

Appendix G: ETHER .................................................................................................................... 54 

G.1 Use Cases Satisfied ......................................................................................................... 54 

G.2 Use of ETHER in the CLEW for End Users .................................................................. 54 

G.3 Integration of the ETHER Functions in Domain Applications for Developers ............. 55 

Appendix H: cTAKES .................................................................................................................. 57 

H.1 Use Cases Satisfied ......................................................................................................... 57 

H.2 Use of cTAKES in the CLEW for End Users ................................................................ 57 

Appendix I: BioPortals ................................................................................................................. 60 

I.1 Use Cases Satisfied ......................................................................................................... 60 

I.2 Use of BioPortal in CLEW for End Users ...................................................................... 60 



 3 

I.3 Integration of the BioPortal Annotation Function in Domain Applications for 
Developers ...................................................................................................................... 61 

Appendix J: Examples of Shared NLP Pipelines and Web Services ............................................ 63 

J.1 Safety Surveillance Example .......................................................................................... 63 

J.2 Pathology Example ......................................................................................................... 66 

The findings and conclusions in this report are those of the authors and do not necessarily represent the official 
position of the author’s agencies (CDC, FDA). The authors have no conflicts of interest related to this work to 
disclose.   



 4 

CLEW Team Members 

Team Member Organizations Team Members 
Center for Biologics Evaluation and Researcher 
Food and Drug Administration  

Taxiarchis Botsis – Project Co-Lead 
Mark Walderhaug – Project Co-Lead 
Kory Kreimeyer 
Abhishek Pandey 
Matthew Foster 
Richard A. Forshee 

Cancer Surveillance Branch 
Division of Cancer Prevention and Control 
Centers for Disease Control and Prevention 

Sandy Jones – Project Co-Lead 
Joe Rogers 
Wendy Blumenthal 
Temitope Alimi 

Northrop Grumman Steve Campbell – Project Manager 
Fred Sieling – Project Manager 
Marcelo Caldas 
Sanjeev Baral 

Health Language Analytics Global 
(sub-contract with Northrop Grumman) 

Jon Patrick 

Engility Corporation Wei Chen 
Guangfan Zhang 
Wei Wang 

Vassar College 
(sub-contract with Northrop Grumman) 

Keith Suderman 

 
 



 5 

 

List of Abbreviations 

AE ......................................................Adverse event 
AI .......................................................Artificial intelligence 
API .....................................................Application programming interface 
CDC ...................................................Centers for Disease Control and Prevention 
CDE....................................................Common data element 
CLEF ..................................................Conference and Labs of the Evaluation Forum 
CLEW ................................................Clinical Language Engineering Workbench 
EHR....................................................Electronic health record 
ES .......................................................Environmental scan 
ETHER ...............................................Event-based Text-mining of Health Electronic Records 
eMaRC Plus .......................................Electronic Mapping, Reporting, and Coding Plus 
FAERS ...............................................FDA Adverse Event Reporting System 
FDA....................................................Food and Drug Administration 
GUI ....................................................Graphical user interface 
HL7 ....................................................Health Level Seven 
HTML ................................................Hypertext Markup Language 
i2b2 ....................................................Informatics for Integrating Biology & the Bedside 
IAA ....................................................Inter-annotator agreement  
JSON ..................................................JavaScript object notation 
MedDRA ............................................Medical Dictionary for Regulatory Activities 
NLE ....................................................Natural language engineering 
NLP ....................................................Natural language processing 
PCOR……………………………….Patient-Centered Outcomes Research 
PCORnet ............................................National Patient-Centered Clinical Research Network 
PCORTF…………………………….Patient-Centered Outcomes Research Trust Fund 
SemEval .............................................Semantic evaluation 
SER ....................................................Semantic entity recognition 
ShARe ................................................Sharing Annotated Resources 
SNLP ..................................................Statistical natural language processing 
UIMA .................................................Unstructured information management application 
UMLS ................................................Unified Medical Language System 
VAERS ..............................................Vaccine Adverse Event Reporting System 
XML ...................................................eXtensible Markup Language 



 6 

 

Overview of Report 

This report is the fourth deliverable in the Development of a Natural Language Processing 
(NLP) Web Service for Structuring and Standardizing Unstructured Clinical Information, a 
collaborative project between the Centers for Disease Control and Prevention (CDC) and the 
Food and Drug Administration (FDA). The Workbench (CLEW) will provide federal agencies, 
public health agencies, Patient-Centered Clinical Research Network (PCORnet) participants, and 
others with access to advanced NLP tools and pipelines with capacity to assemble their own 
pipelines. The pilot applications developed using these tools convert unstructured clinical 
information such as cancer and safety surveillance data into structured and standardized coded 
data. 

This report presents a detailed technical description of the core NLP approach of the prototype 
version of the Workbench and two pilot applications developed using the Workbench. In doing 
so, the core motivating use cases for NLP across a range of clinical domains were explored. The 
tools and constituent components that are available as part of the prototype are described. 

The intrinsic versatility of our approach revolves around the ability to develop customized 
processing pipelines from unique compositions of well-developed containerized services. This 
can enable software engineers to establish the best NLP pipeline for a given task. In developing a 
generalized framework for pipeline, generation based on applications, our methodology moves 
from the research activities of NLP performed by computational linguistics to the functional 
requirements of large engineering practice. To reflect a more generalized and versatile 
framework, it is best considered a Clinical Language Engineering Workbench (CLEW). Refer to 
section 3 of this document for a detailed review of NLP to natural language engineering (NLE). 
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1 Project Objectives 

The primary objective of this project is to provide a mechanism to “translate” free text data into a 
structured form that enables the harnessing of clinical prose for surveillance and research 
purposes. Patient-Centered Outcomes Research (PCOR) researchers, federal agencies, and public 
health agencies will have access to NLP tools and shared services to translate clinical textual 
information into standardized formats to enable the use of classical data analytics methods. The 
following objectives were set in the statement of work for this project: 

• Conduct an environmental scan. The project reviewed published and existing NLP 
architectures, NLP methods, NLP tools, common data elements (CDEs), and SDC 
activities that are in use by federal agencies, public health agencies, academic centers, 
commercial vendors, and PCORnet that are freely available for inclusion on the CLEW 
Web Services. The Workbench will provide an environment to support and encourage 
agencies to build and provide NLP services that return standardized data needed for 
analytics or other work processes, such as the CDC cancer surveillance and FDA safety 
surveillance domains. 

• Design the pilot CLEW web services and, pending Office of the Secretary (OS) Patient-
Centered Outcomes Research Trust Fund (PCORTF) Resource Center design review and 
the Assistant Secretary for Planning and Evaluation (ASPE) approval, proceed with the 
development of the pilot version. 

• Design and construct a language engineering environment that serves the needs of three 
communities of users: 
- Common users who want a simple mechanism to investigate a small number of 

documents. 
- Information technology developers who want to use a service to automate operational 

data processing. 
- NLP expert users who want to create new services by experimenting with the 

configuration of an NLP pipeline to optimize its performance. 
• Include NLP functional modules and a mechanism for linking them together into a 

coherent pipeline that enables design and testing of any combination of modules to create 
usable services. 

• Provide a mechanism for deploying a developed service onto the CLEW so that it is 
available for use by any appropriate public authority. 

• Provide a catalogue of publicly available services whether they installed in the CLEW 
itself or on a third party site. 

• Pilot the CLEW web services on CDC’s Innovation Research and Development 
Laboratory Environment. 

• Evaluate the effectiveness of the CLEW for building NLP services. 
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• Evaluate the performance of two pilot web services built for processing cancer pathology 
reports and safety surveillance data. 

• Provide directions and illustrations for third parties to create their own services by 
developing pilot applications involving: 
- Annotation of corpora of sample reports using text datasets drawn from CDC and 

FDA resources to form a gold standard of target content. This can inform the learning 
process and assess the learning capabilities of the developed demonstration services. 

- Building of functional NLP pipelines using the annotated corpora. 
- Conversion of the pipelines into services and deploy them in the CLEW. 
- Documentation of the complete processes used to create the services as an illustration 

of end-to-end language engineering (LE). 
• Release the system for use by federal agencies, public health agencies, and PCORnet 

participants. 

2 Background and Significance of Pilot User Systems 

In the United States, central cancer registries collect, manage, and analyze longitudinal data 
about cancer cases and deaths. These data are collected from multiple sources such as hospitals, 
laboratories, physician offices, and independent diagnostic and treatment centers. While there 
have been strides through Meaningful Use and other activities to implement standardized 
electronic health record (EHR) systems, parts of the medical record, laboratory reports, and other 
clinical reports still use free-form narratives. Information in this format cannot be used in any 
form of statistical analysis. Similarly, a considerable amount of clinical information submitted to 
FDA’s spontaneous reporting systems is either not coded at all or not linked to the appropriate 
Medical Dictionary for Regulatory Activities (MedDRA) terms. 

The 2009 American Recovery and Reinvestment Act included multiple measures to modernize 
our nation’s infrastructure, one of which is the Health Information Technology for Economic and 
Clinical Health (HITECH) Act. The HITECH Act supports the concept of EHR Meaningful Use, 
an effort led by the Centers for Medicare & Medicaid Services and the Office of the National 
Coordinator for Health IT. HITECH proposed the Meaningful Use of interoperable EHRs 
throughout the United States’ health care delivery system as a critical national goal. Because of 
these initiatives, the clinical care community has moved to EHR systems that utilize standardized 
common data elements (CDEs). Despite this move, a significant amount of clinical information 
in the EHR continues to be unstructured textual data, which limits both the primary and 
secondary usage of the contents of these reports. 

Hospital reporting of cancer cases has been highly standardized over the past decade but as 
patient care has expanded beyond the hospital setting, central cancer registries have had to 
incorporate data from non-standard systems containing large amounts of unstructured data. Over 
the past decade, CDC has worked closely with the College of American Pathologists to develop 
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synoptic reports for standardized reporting of pathology and cancer biomarker data. The use of 
these templates would standardize the majority of cancer data that pathology and genetic 
laboratories report to central cancer registries. However, an incentive does not currently exist for 
pathology laboratories to change their laboratory information systems to use these templates; 
thus, the anatomic pathology and cancer biomarker data reported to central cancer registries 
continues to be free-form narrative reports. 

The data contained in these unstructured pathology reports, biomarker reports, and physician 
EHR reports are critical for maintaining a complete cancer surveillance system for analysis of 
population health and adequate patient care. However, the process of abstracting cancer data is 
labor intensive and expensive, requiring human intervention to abstract critical pieces of 
information such as histology, primary site, behavior, grade, laterality, and more. The use of 
NLP tools could reduce the resources needed for analyzing unstructured data and increase the 
completeness, timeliness, and accuracy of cancer surveillance data, as well as offer potential of 
reaping a much more substantial variety of data from these reports. 

The FDA Adverse Event Reporting System (FAERS) and Vaccine Adverse Event Reporting 
System (VAERS) are spontaneous reporting systems in which pharmaceutical manufacturers, 
medical practitioners, patients, and their representatives submit data regarding the safety of 
drugs, vaccines, and biologics. The reported information supports important surveillance tasks 
such as the examination of safety concerns related to marketed products, the evaluation of 
manufacturer compliance to reporting regulations, and multiple research activities both within 
and outside FDA. The adverse event (AE) description in VAERS and FAERS data are coded as 
MedDRA codes. In both systems, a considerable amount of clinical information in the AE 
narrative is either not coded at all, such as the medical and family history, or not linked to the 
MedDRA codes, such as the date of onset. In particular, the exact time information for each 
event (and the code(s) that represent it) is not fully captured from the AE narrative and stored in 
a structured VAERS or FAERS data field. Both systems also often have multiple reports for the 
same event, which can affect surveillance. Manual review of each report is often the only way to 
trace these duplicates. However, after unstructured fields have been transformed into structured 
data, detection and accounting for duplicate data samples becomes trivial. It is therefore 
important to develop services for getting the most from the VAERS and FAERS narratives, 
structuring the unstructured data, improving its quality, and better supporting data requests from 
the research community. 

This CDC and FDA collaborative project can result in the development of a Language 
Engineering (LE) workbench to enable any public authority team to assemble an NLP service for 
their own needs that accepts and processes unstructured textual information and returns 
standardized semantic entities of their own definition. The CLEW reports a variety of clinical 
terminologies as an added tool for service developers. This project completed two pilot 
implementations on the CLEW implemented by CDC using cancer data, and by FDA using 
surveillance data for blood products and vaccines. Guidance is provided to other federal 
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agencies, public health agencies, and PCOR Institute/Clinical Effectiveness Research 
participants on how to include their domain-specific terminologies and coding rules, such as the 
National Library of Medicine MetaMap tool for mapping text to terminologies in the Unified 
Medical Language System (UMLS). The CLEW is open-source with a modular programming 
approach that is implemented to allow flexibility for future expansion or modification of its NLP 
functionalities. 

The pilot projects also adapted the existing NLP functionalities of FDA’s Event-based Text-
mining of Health Electronic Records (ETHER) system for clinical text, and CDC’s Electronic 
Mapping, Reporting, and Coding (eMaRC) Plus text mining functionality to operate as services 
on the Workbench. A requirements gathering process was completed prior to development of the 
architectural design of the Workbench’s NLP components to ensure that a broad range of needs 
are included for any future users of the web service. 

3 Introduction to Natural Language Engineering (NLE) 

The construction of CLEW is to enable the “productization” of text mining and statistical NLP 
(SNLP) methods to be developed readily and distributed as web services, in support of the broad 
range of health organizations encompassed by public administration. 

This section: 

• Discusses the justification for taking a LE strategy for completing the project. 
• Positions the various types of NLP functions and their contributions to analyze text 

successfully. 
• Discusses the various implementation directions a practical solution could take. 
• Details the steps required to assemble a team of appropriate professionals to build the 

pipeline using the Workbench and commission it into service. 
• Defines the strategy we have adopted to implement the CLEW. 

Researchers have addressed NLP since computing was invented. Initially, it was identified as a 
type of artificial intelligence, but soon emerged as a separate discipline known as computational 
linguistics. In its first 30 years, computational linguistics focused on converting linguistics, 
particularly grammar, into algorithms. Since the 1990s, the role of linguistics has taken a back 
seat to the methods of computer scientists, particularly machine learning algorithms. The term 
SNLP encompasses these methods that form the foundation of much of the research in the field 
and a backdrop for the CLEW. 

The development of Internet search engines led to another line of language computational 
development. The field of information retrieval, better known as text mining, ignores linguistics 
and focuses on the statistical distribution of independent words within texts.  In a recent 
development, the surrounding context of words as well as the word itself are considered. 
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Text mining methods are fast at processing millions of documents to give a relatively coarse 
representation of their macroscopic lexical characteristics. The advance of text mining has led to 
the general belief that a fully generalizable NLP technology can be built. This is not the case. 
The success of general search engines obscures the difficulty of creating high-precision NLP 
systems where speed and volume of documents hide the lack of semantic precision in the results 
they produce. 

Computational linguistics is a lengthier process targeted at representing the detailed semantics of 
texts. It takes longer to develop applications and process documents, but gives more detail and 
captures the subtleties of the text. More time and effort is required to attain higher accuracy. 

The CLEW is founded on the principles in computational linguistics because the crude methods 
of text mining are not normally sufficient to achieve a level of accuracy that is productive and 
safe for carrying out the critical research and analytics of the health and PCORI communities. 
Therefore, use of the CLEW to build NLP pipelines requires assembling a team with the 
competencies to carry out a complex project over a significant period of time. The CLEW 
provides some of the technology and a solid framework with which to design and plan a 
sophisticated language-processing objective better and more easily. However, it is not a method 
for manufacturing a quick and easy text mining application. It will be an environment that 
supports nascent NLP aspirations for many health organizations and researchers by providing 
working services either for experimentation or to perform routine operational processing for data 
analytics objectives. 

With the emergence of computational linguistics into a widespread discipline of interest, 
particularly in the European Union, an effort to systematize the development of NLP 
applications, rather than just do research in it, has arisen. This work is now identifiable as natural 
language engineering (NLE) and best represented by the General Architecture for Text 
Engineering (GATE) project. The CLEW is an effort to introduce LE into the broader health and 
PCORI communities, following earlier research efforts best represented by the various 
participants in the AMIA NLP User Group, the i2b2 NLP Challenges and the release of open 
source software such as cTAKES, as well as the precedence established by GATE. 

For the purposes of this report, LE is defined as the systematic process of using NLP and SNLP 
methods to deliver useful processing outcomes for a defined function. While NLP is classically a 
pipeline of processors that produce some particular content identification, LE aims to 
systematize the process of creating NLP pipelines and using their output for user defined value 
propositions. It is a production line for SNLP and NLP based use case applications. 

The advantages of conceptualizing this project as a CLEW are: 

• It is the best position for fitting the project into ASPE’s generalization objectives. 
• It defines the project for research activities by pushing it into a functional activity for the 

broader health community. 
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• It identifies the project as a distinct activity separate from the work of the many research 
groups engaged in the field. 

• It provides a platform and philosophical pillar to separate the project from commercial 
artificial intelligence (AI) operators who are building applications using text mining 
approaches by asserting the separation of NLP and SNLP is a language engineering 
choice. 

• It demonstrates the complimentary roles of text mining NLP and SNLP in the pilot 
solutions we provide in eMaRC Plus and ETHER. 

4 Building an NLE Service Application 

4.1 The Importance of Accuracy 
A core understanding for creating and using an NLP pipeline is the importance of accuracy and 
the effects of errors. As information is generated throughout a pipeline of processes, errors at 
earlier stages have a multiplicative effect downstream. Hence, it is vitally important that even 
small processing weaknesses are identified and eliminated in every stage of processing. This 
requires attention to the minutiae of both processing algorithms and the texts to which they are 
applied. In the health and PCORI contexts, accuracy is paramount due to the effect errors can 
have on peoples’ lives. 

Many applications are touted in the public arena as NLP, where text is processed in simple ways 
such as searching for words and phrases using string-matching algorithms. These methods are 
easy to implement and effective in many contexts, such as web searches. However, other 
applications, particularly health applications, need higher accuracy and serious consideration of 
the target concept’s semantic context. For example, it is important to understand the distinction 
between a diagnosis that is confirmed, negated, or compared to another diagnosis. This 
processing requires a sophisticated solution that captures semantics with high accuracy. The full 
power of computational linguistics are applied; text mining methods rarely suffice. 

The CLEW is an environment where different techniques can be harnessed for resolving specific 
use cases. Accuracy is attained by choosing and applying those tools thoughtfully, not by the 
convenience of using the Workbench. In many settings, no services are available to perform the 
NLP functions required for a particular task. The Workbench will make it easier to build that 
functionality. 

4.2 The NLE Pipeline Architecture 
The process of building an NLP application requires consideration of many variables. A linear 
pipeline is essential and there is a small selection of publicly available methodologies that 
parallel this approach. The pipeline’s core processes include: 

• Tokenization. 
• Word recognition. 
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• Sentence boundary detection (SBD). 
• Semantic entity recognition (SER). 

Other processes may contribute to a given application. Project objectives will determine these 
enhancements. 

Tokenization is the process of identifying each of the objects, known as tokens, between 
whitespace. This string is most often thought of as a word, but many tokens are not words, such 
as numbers, abbreviations, and acronyms. A tokenizer separates words from punctuation, which 
is treated as a token. This task becomes complicated with the use of punctuation to indicate both 
the beginning and end of pertinent sections of a document, especially in headings, where non-
alphanumeric characteristics can be used for highlighting. In scientific settings, such as health, 
tokenization is complicated by tokens that combine letters, digits, and other characters, and 
where capitalization of letters adds meaning. 

Word recognition is the task of identifying an alphanumeric string as a known word. It also 
includes the task of collecting other attributes of that word for semantic entity recognition 
processing downstream. A word is recognized by comparing it to a predefined lexicon of words 
with attached attributes. Common attributes include its dictionary representation, known as a 
lemma, its notional part of speech, and any appropriate semantic categories such as body part, 
disease, or medication. 

The orthography or case of a word can also be important in word recognition. For example, the 
string “all” would have the common English meaning, while the string “ALL” would mean 
<acute lymphocytic leukemia> in a cancer context, and possibly something entirely different in 
another context. (Note: Quotation marks indicate strings and angle brackets indicate semantic 
meaning.) In downstream processing, the proper recognition of <ALL> would convey the 
knowledge in the lexicon that it is a member of the semantic class <cancer> with a sub-type of 
<lymphatic cancer>. 

The word recognition processor can also perform spelling correction. Missing or extra white 
space, letter omission or addition, and misordering of letters can cause spelling errors. The 
ability to correct misspellings either automatically or by offering a selection to a user is severely 
limited because of the computational cost of computing all possible corrections. Most 
applications can only offer rectification of up to two letter errors and hardly ever encompass 
whitespace errors. Spelling correction might also be provided as a post processing to word 
recognition acting as a separate module in the pipeline. 

Sentence boundary detection, also known as sentence splitting, is the process of recognizing 
the beginning and end of sentences. We are all used to sentences being defined by a full stop, 
whitespace, and new word beginning with an upper-case letter. While this is the most common 
method, it is not unique. Sentences can be terminated by the newline character “\n” or by a colon 
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“:” or semicolon “;”. In text that is massaged by electronic processing, normal sentence markers 
can be lost altogether, especially if all the text is in upper case. While it is possible to obtain high 
accuracy in sentence boundary detection, a small amount of uncertainty can remain. These errors 
can lead to serious misrepresentations of meaning. For example, the text 

“- invasive ductal carcinoma – high grade intraepithelial hyperplasia” leads to the <ductal 
carcinoma> being assigned the value of <high grade> if the sentence boundary is not properly 
identified. 

Semantic entity recognition (SER) identifies entities of interest to the NLP use case. SER is 
different from the more commonly understood named entity recognition (NER), which is the task 
of recognizing proper names in texts and usually divides into the groups of persons, 
organizations, locations, and other names. In health settings, NER is valuable, but SER is the 
dominant need. 

SER is the single largest computational function in any health NLE application. SER can be 
implemented in many ways, from simple methods to elaborate machine learning methods. In 
some instances, a simple method may reach the desired accuracy needed for the purpose. 
However, a more elaborate method may be required to reach the highest rate of accuracy that is 
achievable. 

4.3 Rule-Based Modeling 
Gazetteers: SER begins with a gazetteer of words and phrases relevant to the professional 
community of practice for which the application is being developed. This is in addition to a 
general language lexicon of the host community (English in our case). The gazetteer can be 
acquired from public sources or manually developed by the project team. In the latter case, a 
systematic method of acquisition is applied using software to annotate the source texts so there 
can be re-investigation of the origins of the terminology. Importantly, the gazetteer contains 
coherent noun phrases without verbs. Recording more information about the phrases and storing 
them all appropriately can achieve the extension of the gazetteer into a lexical database. The 
added information may be recognized acronyms, abbreviations, semantic categories, and 
synonym phrases. 

The gazetteer list method tends to be efficient for data collection and can be applied to target 
texts using computationally simple methods such as regular expressions. The methods are 
precise in that they find all the examples stored in the gazetteer. However, their major drawback 
is that the gazetteer may not find anything to fit the stored form exactly. Some variation can be 
achieved by using Regular Expressions with wildcard items but this substantially increases 
search cost, is liable to produce many false positives, and is not a systematic approach to solving 
the general SER problem. 

Regular expressions: This is a mechanism for searching for literal strings in a text. Searching 
for literal text strings is effective at finding all known examples. However, it doesn’t enable 
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finding similar strings that have inconsequential differences such as the difference between a 
singular or plural form of a noun. It does incorporate a number of devices to generalize a string 
search to make it more expansive, so wildcard elements can be inserted. Regular expressions 
overcome the problem of slight variation in word morphology as an expression could use a 
wildcard as the last character so singular or plural forms would be found. The difficulty with 
regular expressions is they quickly overgeneralize leading to a surfeit of false positive results. 
Furthermore, they cannot find anything that does not fit the deterministic definition of the regular 
expression, so there is little idea of the false negatives in a search. 

4.4 Statistical NLP (SNLP) Modeling 
The most advanced method for SER is the approach of SNLP. This method uses machine 
learning algorithms of the type known as supervised classifiers, which use a set of data objects 
with known classes for training a classifier to predict the classes of data objects (words and 
phrases) in unseen texts. A data object is an object with many defined attributes and the values of 
those attributes collected. Once the set of objects are compiled and their classes assigned they 
constitute the “training set”, so a statistical computational model of how to classify the data 
objects can be trained using Machine Learning algorithm. In the case of NLP, the data objects 
are each token in a collection of texts and the attributes known about those tokens, such as their 
semantic class, their neighboring words and the semantic class of those neighbors. The model 
built using these attributes is the <language model> in NLP settings. 

The attributes are compiled by passing a text through a series of processing modules forming a 
pipeline, each of which computes defined characteristics of the tokens in the text. A huge 
number of attributes can be compiled about each token, and part of the skill of building an 
efficient application is to discover quickly and efficiently the best attributes that produce the 
most accurate results. Accuracy is estimated by holding out 10% of the training set and applying 
the trained model to them to compute their tokens’ classes. This is called the test set. The 
differences between the gold standard classes of the tokens and their model classes is a measure 
of the accuracy of the model. This process is repeated 10 times on 10 different segmentations of 
the corpus and the results of the 10 tests averaged to arrive at an estimate of the mean accuracy. 
It also acts as a guide as to what needs to be improved in the model by either adding extra 
features or reassessing the upstream processing modules to provide different attributes for the 
tokens. The investigation into the optimal model for the application consists of iteratively testing 
one attribute set for its accuracy and then changing the attribute set to overcome the deficiencies 
of the current attribute set. 

Identifying the classes that need to be recognized in a given application can also be an 
intellectual challenge. In the eMaRC Plus pilot application the user requirement is to extract 
from cancer pathology reports five basic features of the clinical case: {site of the cancer, its 
histology, behavior, grade, laterality}. These are the core classes in the application. For the 
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training process to continue, each token in the training documents must be assigned values of one 
of those 5 semantic classes; otherwise it is assigned to other, that is, unclassified. 

However, this simple representation of the use case may not produce an optimal result. Cancer 
can spread, so the investigation site may be different from the original disease site. Where this 
information is provided in the report it requires another class, that is, <Origin of Cancer 
Primary>, so the class set is larger than the target list of attributes. In many use cases, the number 
of classes that need to be computed may be many more than the core content required for the 
primary use case defined. 

All NLP methods can be considered methods for generating analytics. They are not normally the 
end of processing, but rather a step to obtain something of higher value. The end use of the NLP 
outputs is key to deciding the type of a language model to build. 

Expanding the feature set: The attribute set in machine learning is known as the “feature set” in 
NLP circles. The optimal feature set could be explored so that the combination of classes and 
source texts are best matched. There are well-known heuristics for a starting feature set, such as 
the neighboring tokens to the left and right of the current target token, their parts of speech, and 
their grammatical role. The latter two features are available only if processors assign to parts of 
speech and a grammatical roles to tokens earlier in the pipeline. The features used in the 
language model are determined by the pre-processors in the pipeline that assign feature values to 
each token. These pre-processors differentiate NLP from text mining techniques, and allow for 
higher accuracy and richer semantic interpretation of the texts. 

In clinical texts, some of the classes of most interest are diseases, body sites, medications, 
procedures, social history, and clinical events. A common gazetteer source that can supply more 
features is the Metathesaurus provided by the National Library of Medicine. Some other features 
used are MESH terms, SNOMED CT categories, and time categories. 

Supervised classifiers: Many classifiers are available from the machine learning open source 
community. The most commonly used in NLP are Support Vector Machines and Conditional 
Random Fields. The CLEW does not incorporate any machine learning functions and requires 
service developers to use their own resources to build their training sets and language models. 
Given the rapid advances being made in the machine learning community, the CLEW allows 
developers to write custom modules to incorporate application-specific machine learning 
methods if desired. The Workbench provides a catalogue of NLP processors suitable for use in 
an NLE pipeline, and the service platform on which the final service can be installed for public 
use. 

Preparing a training set: Select and prepare training set meticulously. First, choose a set of 
documents that precisely represents the use case under development. The documents can 
represent all of the variables with the linguistic variety a real-world data set has. Then define the 
primary class set and the operational class set. This set of semantic classes forms the tag set by 
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which the texts need to be annotated, as the annotations represent the training set of examples the 
algorithm learns from. The annotations are applied manually using annotation software that can 
be selected from the Workbench or other sources that have data formats compatible with the 
Workbench formats. 

The annotations represent the gold standard from which the language model is constructed and 
later applied back to, so as to assess its accuracy. The pre-processing pipeline computes the 
features of all of the tokens, and when brought together with the annotations, which define the 
classes of the tokens, constitutes the training data for the classifier algorithm. 

The annotation process can be problematic, as it requires humans to learn the meanings of the 
semantic classes and apply them consistently. Early iterations of the language modeling are as 
much about identifying inconsistencies in the manual annotation as about modeling the 
classification task. 

The final pipeline: The pipeline is complete when the language modeling operates at sufficient 
accuracy to warrant installation of the service. The development team decides when it has 
exhausted its efforts to gain more accuracy through statistical methods and to use post-
processing rules to polish results containing idiosyncratic language not amenable to statistical 
analysis. 

The executable service is compiled together as a pipeline sequence of processing that prepares all 
of the tokens in a text for their features, submits the tokens with features for classification, and 
receives the outputs. That content and the format for delivery depend on the primary use case. 

5 Specifications for the CLEW 

Based on the discussion in the above section on NLP, the CLEW provides the following 
functionality: 

• Pilot web services that compute defined functions for, minimally, cancer pathology and 
safety reports. 

• Identification of candidate service consumers and providers. 
• Documentation for conducting the stages of the language engineering task sufficient to 

use the web development environment. 
• Documentation on how to set up a client and service to use the Workbench. 
• Documentation for creating the pipelines using the services in the web environment. 
• Documentation for conducting the stages of the language engineering task sufficient to 

assemble and test a new application and install for operation. 
• Demonstration on how to assemble and test these components using the Language 

Application Grid (LAPPS) platform. 
• Open-source code modules that would be constituents in a statistical NLE application, 
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including: 
- Annotator tool. 
- Corpus management tool. 
- Core NLE processors: Tokenizer, word recognition, sentence boundary recognizer, 

and semantic entity recognizer. 
- Machine learning algorithm. 

• An environment that enables development of an NLP pipeline in three stages: 
- Building a gold standard corpus as the source of training data to create the service. 
- Building an NLP pipeline. 
- Training the language model as an off-Workbench task. 

• An environment that enables the development of an NLP pipeline by combining the 
existing services. 

6 A Practical Way Forward 

The range of conceptual solutions have been presented above to set the scene for describing a 
practical pathway forward. We now define in more detail the nature of the total production 
process, what the CLEW can provide, and what developers would provide. 

6.1 The Architecture of a Language Engineering Production Line Incorporating 
SNLP Methods 

a. Compose a training set of data: 

• Define the computational objectives of the endpoint processing. 
• Define the semantic entity set for extraction. 
• Compile a representative set of documents 
• Annotate the documents with the semantic entity tags 
• Revise the annotations based on the accuracies of the language modelling 

b. Build an SNLP or NLP processing pipeline: 

• Choose the processors for inclusion in the pipeline that provides suitable features for 
identifying semantic entity classes (tags) 

• Join the pipeline processors so they can pass outputs of one as inputs to the next 
• Generate a set of features at the end of the pipeline for input into the Machine Learning 

algorithm 

c. Build a language model from the training set: 

• Select a Machine Learning algorithm that matches the classification task 
• Accept the input into the Machine Learning algorithm 
• Compute the language model using the selected algorithm 
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• Evaluate the accuracy of the computed language model 
• Return to the annotation process and correct identified missing or incorrect annotations. 
• Repeat the evaluation and language model generation iteratively until the error model is 

stable and sufficiently small. 

d. Assemble the SNLP pipeline and the final language model as a service in a production 
environment. 

6.2 Using the Service 
All services provided by the Workbench are provided as-is. All data submitted to any service are 
free from personally identifiable information (PII) or any sensitive data. The services are mostly 
stateless and transient, where no data is stored on the servers except for some basic logging 
functionality. Other third-party tools (for example LAPPs/Galaxy) may require users to 
authenticate and submit data that are be stored on such servers. This is beyond the scope of the 
Workbench. The Workbench itself does not require authentication, since all of the services and 
information are publicly available. If more security is needed, download the needed projects to a 
separate environment and secure it as appropriate. 

7 CLEW Architectural Design 

7.1 Leveraging the Environmental Scan 
In the NLP environmental scan (ES), we combined the results from a systematic literature review 
with a comprehensive multi-channel review covering researchers and institutions, NLP 
challenges, and government activities. We selected the eligible tools on the basis of availability 
(a tool is open-source, downloadable, and source code exists) and relevance (a tool supports the 
processing of clinical texts, such as the ones included in adverse event or pathology reports; it 
generates standardized and/or coded output; or is equipped with advanced capabilities). These 
tools were subsequently categorized into complete systems, applications, and NLP components 
and further evaluated on three aspects (development activity, popularity, and framework used) 
representing the importance and applicability of the tools (See Appendix D). 

The development of the pilot version of the CLEW was guided by the ES findings and the pilot 
use cases, with initial focus on selected tasks around the processing of safety surveillance and 
cancer data. The CLEW prototype contains tools identified in the ES, identified by stakeholders, 
and/or revealed during our ongoing monitoring of the NLP community. 

7.2 Users - Key Competencies Assumed Knowledge 
The CLEW provides a wide range of functionality and flexibility depending on the end-users 
capabilities and expertise with using NLP and Machine Learning techniques. CLEW supports 
three roles: the non-NLP expert user, the information technology (IT) developer, and the NLP 
expert user, described below. 
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• Non-NLP expert: These users have a high-level conceptual understanding of NLP that 
can interact with existing services offered by the Workbench. 

• IT developer: These users have detailed technical knowledge to interface 
programmatically with pre-defined shared services on the CLEW, submit data to a 
service, and process expected outputs back to the local application on behalf of its users. 

• NLP expert: These users can build NLP solutions and pipelines. They can have the 
following competencies to build an effective NLP application: 
- Computation linguistics. 
- Linguistics for semantic class design and annotation. 
- Clinical knowledge related to the specific domain being addressed. 
- Software engineering expertise in pipeline development and application service 

creation and installation. 
- Machine learning methods. 

7.3 The Architecture 
The CLEW is establishing a framework that enables the use and sharing of NLP tools, modules, 
and methods to develop, evaluate, and deploy web services that support domain-specific use 
cases. See Figure 1 below for a high-level conceptual architectural design of the CLEW. 
Components of the LAPPS project, funded by the U.S. National Science Foundation, were 
leveraged in development of the CLEW architecture. The LAPPS Grid project has made 
significant progress towards interoperability of NLP tools and data, as well as creating a 
comprehensive network of web services and resources within the general NLP community1. 
LAPPS has not yet been used for any clinical applications, and has not been proven that it has 
the functionality to support development of clinical NLP use cases. 

The CLEW is a service-oriented architecture and supports Simple Object Access Protocol 
(SOAP) and REpresentational State Transfer (RESTful) services to utilize various NLP tools and 
modules to engineer clinical NLP pipelines. The clinical NLP pipeline and associated services 
can be catalogued on the Workbench for use as a public service, or, if desired, downloaded and 
implemented within the user’s local environment. 

It is important that users of the CLEW understand the impact errors in NLP processing can have 
on the output. As information is generated throughout a pipeline of processes, errors at the earlier 
stages have a multiplicative effect downstream. Therefore, it is important that even small 
processing weaknesses are identified and eliminated in every stage of processing. This requires 
attention to the minutiae of both processing algorithms and the text the algorithms are applied to. 
Tremendous care and precision is required to build a successful application. There are many 
different understandings of NLP in the public arena and each results with outcomes of varying 
quality. Prior to implementing any NLP processing, the user assesses what quality is adequate for 
the work they need to complete. This assists the user in determining the best approach to take in 
developing an NLP pipeline that is appropriate to complete the task. 
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The CLEW supports multiple combinations of the existing components as well as generation of 
more than one pipeline for a use case.  

 
Figure 1. High-level architecture design of the CLEW. 

7.4 Security and Protection of Personally Identifiable Information (PII) 
The user is responsible for ensuring that no personally identifiable information (PII) is uploaded 
to the CLEW even if limited de-identification tools may be provided. Warning messages are 
included at key decision points to ensure the data do not include PII. 

If there is a concern that PII has not been removed, download and implement the services in a 
local environment. 

7.5 Governance and Administrative Oversight 
The CLEW is intended to provide a clearinghouse of NLP tools and services that can be used 
and shared among researchers and PCORnet participants. The CLEW prototype is developed 
with a minimal set of tools and services, with the intent that other NLP experts request to include 
their specific tools, pipelines, and services on the CLEW. 

In order to maintain a high level of quality and organization of the CLEW, it is necessary to 
create a formal governance that oversees the review and inclusion of tools and services. This 
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governance could include participants from government, academia, and industry to ensure that 
oversight is handled appropriately. 

Determine issues around the provision of data for public display and reuse before the Workbench 
goes live. Make data contributors aware of the manner in which data are used and complete 
MOUs and DUAs. 

A detailed process documents how NLP researchers can contribute their tools and services to the 
CLEW. 

7.6 Tools Catalogue 
The ES identified 54 existing open-source tools. Links to a range of these tools are provided in 
the CLEW Tools Catalogue (see Figure 2). Users can read about each tool and download the 
tools for use in their own local environment. Refer to Appendix D for the full ES list. 

 
Figure 2. Screen shot of the CLEW NLP Tools Catalogue. 
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7.7 NLP Services Catalogue 
CDC and FDA have developed NLP services using tools or certain modules from the tools 
identified in the ES to address the use cases described in sections above. NLP services have been 
combined in pre-defined ways that are wrapped into application programming interface (APIs) to 
achieve maximum interoperability and portability. The APIs can be used by: 

• IT developers in local clinical applications. 
• The CLEW to demonstrate functionality. 

Apart from the pre-defined pipelines, the users can use the CLEW to combine the NLP services 
and generate pipelines for their use cases on the fly. 

The NLP Services Catalogue maintains a list of shared services for utilization by any user to 
analyze the specific type of data of the service. New services can be added to the CLEW 
Services Catalogue for use by others. The new services may support more combinations and 
pipelines. 

7.8 NLP Feature Library 
To train a machine learning model, identify natural characteristics, or features, for each token. 
These features include, for example, word length, part of speech, and relative location in the 
sentence. 

With the feature library, one can readily identify a set of features for each token in a training 
corpus, a manually annotated set of documents. These identified features and documents are then 
input into the pipeline. Next, analyze the pipeline output. If the pipeline performed accurately, 
the model is trained and the pipeline is ready for production. Any taggings of the corpus that do 
not match the manual annotations in the gold standard represent a disparity in the process. Go 
back and adjust the features and repeat the process. 

The CLEW has built a Feature Library software by which features can be invoked to be used in 
the development of a language model. It is primed with features commonly used in SNLP 
applications, but is expected to be enhanced over time by new users who develop applications 
that require specialized feature sets. Having these feature generating applications in one location 
can increase the resources available to the language engineering community. 

7.8.1 How to Use the Feature Library 
The Feature Library can be used inside LAPPS for a single file, or as an external service for a 
folder of files. 

Inside LAPPS: The Feature Library is a service in LAPPS that can be inserted at the end of an 
NLP pipeline the user has assembled. After inserting the Feature Library in the pipeline, when a 
file is submitted for processing, the BIO file is generated at the completion of all the processing. 
It can then be downloaded to the user’s desktop using the LAPPS download function. 
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For bulk file processing: When a folder of files is processed, the Feature Library can be 
accessed via the CLEW. Below are steps for using the Feature Library for bulk file processing: 

1. Open the feature library to use the Feature Library for bulk file processing. 
2. Select required parameter values. 
3. Use the LAPPS upload function. 
4. The CLEW then accesses the files and process them through the Feature Library and 

produce an output BIO file that is stored in the users Downloads folder. 
5. Users can then directly input the BIO file into their preferred machine learning algorithm. 
6. The output is a language model that is then available for tagging files. 

7.8.2 Feature Library Example 
To train a machine learning model for the safety surveillance data, the following types of 
features for each token in the text were identified and implemented: 

• Word length: the length of the word. 
• Part of speech (POS): grammatical tagging or word-category disambiguation. 
• Features extracted from MetaMapLite, such as semantic types. 
• Features extracted from NCBO web service, such as preferred terms. 
• Features extracted from ETHER lexicon (dictionary mapping in the lexicon). 
• Features of adjacent tokens: POS/pattern/Stem features of tokens before/after the current 

token. 
• Heuristic features extracted based on ETHER rules. As an example, a token of interest 

next to Dx/Diagnosis is treated as Primary Diagnosis, while a token of interest next to 
“cause of death” or “COD” is a good indicator of cause of death. 

• Word stem: the stem of the word. 
• Pattern extracted based on the Unicode categories of each of the character in the text (see 

http://www.unicode.org/reports/tr49/tr49-2.html). 
• Relative location in the sentence. 

Among these features, we selected and evaluated the performance of different combinations of 
categories. 

7.9 Data Exchange Formats 
In order to create a pipeline that utilizes different NLP tools and modules, the CLEW provides a 
mechanism to exchange data between the different tools and modules that make up any NLP 
pipeline. 

After exploration of different NLP frameworks, we found that there have been various 
approaches to facilitate data exchange among different components of NLP pipelines as a key 
part of a complete NLP framework, including, but not limited to: 

• Apache Unstructured Information Management Architecture (UIMA) Common Analysis 
System (CAS). 

• General Architecture for Text Engineering (GATE) Plug-In. 
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• Natural Language Toolkit (NLTK). 
• Apache OpenNLP. 

In order to make use of various third-party software tools and ready-to-use components, efforts 
to explore the integration of heterogeneous NLP components and the ability to standardize 
different data formats for exchanging annotated language data among tools such as: 

• DKPro. 
• Ready-to-use software components based on the Apache UIMA framework. 
• NLP components developed by different parties as GATE Plug-Ins. 
• LAPPS Grid standard formats: Web Service Exchange Vocabulary (WS-EV), LAPPS 

Interchange Format (LIF), and JavaScript Object Notation-based serialization for Linked 
Data (JSON-LD). 

The LAPPS Grid has already developed translators that allows tools that use different 
frameworks for exchanging inputs and outputs. 

Based on the findings of the environmental scan and review of the LAPPS Grid, LAPPS LIF, 
JSON-LD, and WS-EV were chosen to exchange information between different NLP tools, 
modules, and web services. 

Self-contained frameworks invite selection as a single strategy for implementation as they 
simplify the movement of outputs from one tool into another tool further down the pipeline. 
However, they create barriers to using software built in other data sharing paradigms. The group 
that has made significant progress to overcome this siloing barrier is LAPPS, so it has been 
chosen as the general mechanism for assembling pipelines. 

This does not, however, exclude any development team from selecting a particular paradigm to 
constrain its own development pathways. 

Based on the findings of the environmental scan, the early experimentation with the Workbench 
prototype includes several components that can communicate internally by using the UIMA 
framework (see Appendix A). UIMA has both advantages and disadvantages, so it is not a 
requirement for components in this project, but it has been beneficial at this early stage for a 
number of reasons: 

• The common use and acceptance of UIMA in research communities and application 
domains, as observed in the environmental scan. 

• The potential ease of integration of existing or new UIMA-based third-party applications, 
components, and tools. 

• The programming languages that may adequately support UIMA-based development. 
• The portability of UIMA-compliant software to various development environments and 

operating systems. 
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Moving forward, the resolution of UIMA formats into the LAPPS paradigm are needed before 
including them in CLEW.. 

7.10 CLEW Instance of the LAPPS Grid 
The LAPPS grid is a development environment created by a team at Vassar College to enable a 
process of experimentation with different open-source NLP pipelines. LAPPS is built using the 
Galaxy platform. 

Galaxy is an open, web-based platform for data intensive biomedical research. The Galaxy team 
is at Penn State, and the Biology and Mathematics and Computer Science departments at Emory 
University. The Galaxy Project is supported in part by National Human Genome Research 
Institute (NHGRI), National Science Foundation (NSF), The Huck Institutes of the Life 
Sciences, the Institute for CyberScience at Penn State, and Emory University. 

The user interface in LAPPS Grid makes it easy for an NLP researcher to plug and play with 
different components from different NLP open source projects. It encourages development and 
experimentation by project teams wanting to engage in engineering NLP production lines. The 
service model created in the CLEW encourages the sharing of the production lines with other 
user communities. 

New pipelines can be developed to compare the quality of output from using different 
combinations of tools, components, and features. The CLEW integrates the use of the LAPPS 
Grid Interchange Format (LIF) to support integration of different clinical tools, components, and 
features across NLP frameworks (such as UIMA and GATE). For example, a tokenizer from one 
system can be paired with a POS tagger from another system. This interoperability is achieved 
by the creation of the LIF standardized data sharing format so that outputs from one module are 
converted into a LIF format ready for use in any other module. On involving another module the 
LIF format is converted into the input format needed for that module. Hence LIF represents a 
common language for the transfer of data from one module to another without needing special 
translation tools. 

The intended primary users of the CLEW instance of the LAPPS Grid (see Figure 3) are IT 
specialists and NLP expert researchers. These specialists can have expertise in machine learning, 
computational linguistics, and software engineering. The team can also include an expert with 
clinical subject matter expertise. 
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Figure 3: Screen shot of the CLEW instance of LAPPS Grid that provides a list of the tools and 
pipelines included. 

8 Pilot Use Cases to Demonstrate Use of the CLEW 

This project’s long-term goal is to support NLP in multiple clinical domains through the modular 
addition of new tools, ontologies, and methods. Progress can be made on many fronts. NLP tools 
have already been developed that focus on many of the important tasks that need to be performed 
to make use of clinical free text. In a previous deliverable, A Report of the Natural Language 
Processing Environmental Scan Results, we have identified and categorized a large number of 
tools useful for clinical NLP across a wide range of domains. 
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This section reviews the cancer pathology and safety surveillance use cases that were used to 
design, develop, and test the CLEW prototype. The initial focus, particularly for the prototype, 
was in supporting the identification of clinical information from cancer and safety data as well as 
time information and time relations from safety data. The final version supports the creation of 
NLP pipelines for the use cases described below and are made available to end users for 
experimenting and developing new pipelines for use in other domain specific data or 
applications. We are also in the process of presenting our approach to other agencies and 
identifying more use cases based on their particular needs that could be supported by the CLEW. 

8.1 Safety Surveillance Use Cases 

8.1.1 Identification of Clinical Information in Text 
One of the first steps in the review of safety surveillance reports is the identification of the 
outcome of interest (such as diagnosis or cause of death), the time to onset, and other alternative 
explanations (such as drug, medical, and family history) from the free-text narratives in the post-
market reports. “Symptom” and “rule out diagnosis” information is also evaluated in this 
process. The example below shows the free-text narrative from a vaccine report that was 
submitted to FDA’s Vaccine Adverse Event Reporting System (VAERS). Features of interest 
such as the vaccine name (bright green), the primary diagnosis (blue), symptoms (gray), medical 
history (yellow), and cause of death (pink) have been highlighted. 

“A 33 year-old man with past medical history significant for dizziness/fainting spells received the 
following vaccines on 10 March 2001: VAX1 (lot number not reported); and VAX2 (lot number 
not reported either). Ten days after vaccination, he developed shortness of breath and chest pain 
and was subsequently diagnosed with myocarditis. On Day 20 (30 March 2010) post vaccination, 
the following tests were performed: an electrocardiogram which was reported to be normal and 
troponin I levels were measured and found to be 12.3 ng/ml (abnormal). Patient died on 02 April 
2010. COD: heart failure. List of documents held by sender: None.” 

Safety surveillance reports contain an abundance of clinical features, the extraction of 
which is essential for clinical NLP tasks. Obviously, the identification of clinical 
information in medical texts is a major milestone in all biomedical domains. 

8.1.2 Normalization/Coding to Medical Terminologies 
Comparisons of clinical information across different patients, different institutions, or even 
different notes for the same patient are substantially easier to interpret when using a common, 
standardized terminology. Many such terminologies exist, and the encoding of clinical 
information into these formats is an important task in developing the NLP pipelines, since these 
normalizations facilitate many forms of automated processing. 

8.1.3 Identification of Temporal Relations 
The processing of temporal information and its association with clinical information is of 
paramount importance in the NLP field2, 3, 4, 5. Temporal information in clinical texts is mainly in 
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the form of temporal expressions, which consist of time modifiers (such as “before” or “after”), 
units days, weeks, or years), and numerical tokens. Although temporal expression can be 
recognized easily in the text, the assignment of these expressions to clinical features and the 
identification of overarching temporal relations can be complex and challenging process, even 
for humans. Many clinical NLP challenges have attempted to address these difficulties by 
incorporating specific tasks aimed at identifying temporal relations. The 2012 Informatics for 
Integrating Biology & the Bedside (i2b2) Challenge on Temporal Relations2, the 2015 Semantic 
Evaluation (SemEval) Challenge (Task 6: Clinical TempEval)6, and the 2016 SemEval 
Challenge (Task 12: Clinical TempEval)7 all addressed the identification of temporal relations in 
clinical texts. Although results from this work have been successful, there are many unresolved 
challenges to address.  

The same free-text narrative from VAERS is shown below. In addition to the clinical features, 
temporal expressions including absolute dates (dark yellow) and relative time statements (red) 
are also highlighted. 

“A 33 year-old man with past medical history significant for dizziness/fainting spells received the 
following vaccines on 10 March 2001: VAX1 (lot number not reported); and VAX2 (lot number 
not reported either). Ten days after vaccination, he developed shortness of breath and chest pain 
and was subsequently diagnosed with myocarditis. On Day 20 (30 March 2010) post vaccination, 
the following tests were performed: an electrocardiogram which was reported to be normal and 
troponin I levels were measured and found to be 12.3 ng/ml (abnormal). Patient died on 02 April 
2010. COD: heart failure. List of documents held by sender: None.” 

In this example, both vaccines are assigned the “2001-03-10” timestamp, corresponding to the 
absolute time “10 March 2001.” While the assignment of timestamps to some features is 
straightforward, for other features this requires calculations based on temporal expressions from 
previous sentences. The primary diagnosis “myocarditis” is assigned the “2001-03-20” 
timestamp, corresponding to the relative time statement “Ten days after” which refers to the 
vaccination date “10 March 2001” in the previous sentence. 

8.1.4 Automated Case Summarization 
Case summarization aims to reduce the size of potentially large documents by retaining only the 
key information from the original documents. In the safety surveillance domain, automated case 
summarization involves the organization of key clinical features such as primary diagnosis, and 
any corresponding time information into a succinct paragraph. It is often necessary to combine 
features retrieved from the free-text narratives with data from various structured fields, such as 
patient age, to summarize the information in the safety surveillance report accurately. 

The goal of case summarization in the safety surveillance domain is to assist medical reviewers 
to retrieve key information by enabling them to review reports in a more effective and efficient 
manner. Baer et al. showed that case summarization of VAERS reports can considerably reduce 
the time and effort spent on the actual review of safety surveillance reports8. Botsis et al. 
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described the main elements of an abbreviated textual summary generated by an automated 
decision support environment at the Center for Biologics Evaluation and Research at the FDA9. 
Their summary combined age, sex, product name, medical and family history, and primary 
diagnoses, along with any applicable timestamps, to summarize safety surveillance reports. For 
example, the sample VAERS report presented above can be summarized as follows: 

“A 33 year-old male was treated with VAX1 and VAX2 on 2010-03-10. He was diagnosed with 
myocarditis 10 days later. The cause of death is heart failure.” 

The summary contains 27 words and 124 characters (without spaces) versus the 100 words and 
535 characters (without spaces) in the VAERS report. Although this is a short post-market 
report, the 73% reduction in the size of the text that has to be reviewed by the medical experts 
creates considerable efficiency. Case summarization is significant in other settings too, such as 
the clinical environment, where physicians have to process large amounts of free-text data. Some 
previous efforts discussed and presented some approaches to address this task10, 11. 

8.1.5 Case Deduplication 
Reported cases and patient records can become duplicated in a particular database if information 
from multiple overlapping sources is brought together. Identifying and addressing these 
duplicates can ensure high data quality. Historically, only structured record information has been 
compared to identify duplicates12, 13, 14, but free text comparisons can also be valuable. In the 
safety surveillance domain, we have applied a method combining both structured information 
and extracted text that has helped create high-quality lists of potential duplicates15. 

8.1.6 Semi-Structured or Templated Text 
Some text sources can be considered semi-structured, meaning they use a specifically mandated 
template but have large variations in filling out content within that template. One excellent 
example is the Structured Product Label (SPL) standard for printed medical product labels 
required by FDA. It designates sections and section ordering that must be included in all product 
labels, but the manufacturers define the specific content and structure within the sections. 
Processing the text from these labels can quickly identify listed potential adverse effects, as 
several studies have attempted to do16, 17, 18 . 

8.2 Cancer Pathology Use Cases 

8.2.1 Annotation of Clinical Semantic Entity Recognition (SER) in Pathology Reports 
Pathology reports contain a wealth of clinical SERs such as primary site, behavior, grade, 
laterality, and histology. The example below presents the free-text portion of a pathology report 
found in one of the cancer registries supported by CDC. SERs representing histology (blue), 
primary site (pink), behavior (yellow), laterality (gray), and grade (bright green) information 
have been highlighted. Identifying the target SERs in this example is a simple task, but the 
general problem is much more difficult when multiple specimens, organs, and histologies are 
present in the text, all needing to be tied together in correct relationships. 



 31 

 

“Right breast tissue with seed localization, lumpectomy specimen: [Blank]. In situ 
component: Ductal carcinoma in situ. Architectural pattern: Solid and comedo. Nuclear 
grade: High grade. Necrosis: Present. Extent: 3 mm residual focus. Margins of 
resection: Negative. Closest margin: Inferior, 3 mm. Calcifications: Present. 
Lymphovascular invasion: Not identified. Lymph nodes: Not applicable. Tumor staging: 
pTis pNX pMn/a. Prognostic markers: Not applicable. Additional pathologic findings: 
Prior biopsy/seed site including inflammatory and repair reaction changes....  

8.2.2 Coding of Clinical Annotations from Cancer Pathology Reports to International 
Classification of Diseases for Oncology, 3rd Edition (ICD-O-3) 

The identification of SERs of clinical terms in the pathology report is only one part of the 
process that is required to complete the reporting necessary for cancer surveillance. The next step 
is to map the SERs to a nationally adopted coding standard, such as the ICD-O-3. This also can 
have its complexities when there are dependencies between the SERs that determine the correct 
codes, such as when the correct site for lymphoma is a function of both the specimen site and its 
tissue type. 

The use of standard coding systems can enable researchers and PCORnet participants to analyze 
the information captured from the text-based pathology reports. The CLEW can provide a 
service to codify the clinical annotations that result from the use case described in 8.2.1 above. 

9 Categories and Components 

A wide range of NLP tools and approaches can satisfy clinical NLP tasks across the domains 
mentioned in the use cases of Section 4. The environmental scan identified and classified a large 
number of NLP tools that were applicable for these types of problems. We have prepared a 
number of these tools to run as part of the CLEW prototype, either on their own or as part of a 
combination pipeline that integrates multiple tools. 
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Figure 4. An outline of the CLEW prototype. The integrated tools are shown in the top boxes, where they have 
been categorized according to the functionality they offer. Four example pipelines are also shown that demonstrate 
some of the possible combinations of tools that can be made in the CLEW prototype to process input text and 
produce annotated output. 

Figure 4 above shows the tools that are currently incorporated into the CLEW prototype, the 
capabilities of those tools, and a number of sample multi-tool pipeline configurations. The tools 
cover several different functionalities, and we have made efforts to separate multi-purpose tools 
into their constituent parts, so that pipelines can be constructed by combining components from 
more than one tool. Depending on the specific clinical need, not all of the listed tasks are 
required, as demonstrated in the example pipelines. 

The development of the services in the CLEW is inspired by the ES findings, but we take the 
next step here and, in some of the cases, utilize certain functionalities only from each tool. For 
example: 

• We have split the original ETHER into two pieces: one for the clinical NER and one for 
the TIE. 

• We are using the cTAKES engine and its temporal module (nothing else in this phase). 



 33 

 

This strategy allows for the combination of components and the creation of pipelines on the fly. 
In some cases, this kind of development is not necessary. For example, BioPortal has an API we 
used directly with minimum development. 

9.1 Integrated Tools and Services 

9.1.1 ETHER 
The FDA’s ETHER tool extracts key clinical and temporal information from safety surveillance 
reports or other free-text sources8. This tool was selected for inclusion in the CLEW prototype 
because it supports multiple use cases, and members of the team are familiar with the tool and its 
code, meaning that integration could be performed smoothly. See Appendix G. 

9.1.2 cTAKES 
The Clinical Text Analysis Knowledge Extraction System (cTAKES) (see 
http://ctakes.apache.org/) is an Apache Software Foundation project. It supports multiple NLP 
tasks, such as the recognition of clinical named entities with a number of contextual attributes. It 
additionally utilizes the UIMA architecture and was therefore considered an appropriate solution 
for early integration in the CLEW prototype. See Appendix H. 

9.1.3 BioPortal 
The CLEW prototype includes a functional link to some of the BioPortal services provided by 
the National Center for Biomedical Ontology through the BioPortal REST API (see 
https://bioportal.bioontology.org/). The BioPortal Annotator service encodes text into 
standardized terms from selected ontologies. Users can restrict output to a list of chosen 
ontologies and a list of chosen UMLS Semantic Types. See Appendix I. 

9.1.4 Pathology SER 
The SER processing for the eMaRC Plus service sends a document to the service and receive 
back the texts that form the five entities of interest, including primary site, histology, behavior, 
grade, and laterality. 

9.1.5 Pathology Codification 
The SEs extracted from the pathology reports are sent to a service that computes the ICD-O-3 
codes for the entities. This service can be of use to anyone needing to obtain ICD-O-3 codes for 
their texts. 

9.2 Future Expansion of Tools as Services 
The environmental scan identified many more tools suitable for addressing use cases in clinical 
domains. By incorporating additional tools over time, the CLEW functionalities could expand 
and new configurations of pipelines could be available. It may be also possible to support the 
generation of more pipelines on the fly as the developed services would have the data exchange 
mechanism in place. However, any third-party tools may not necessarily be readily integratable 
into the NLP installed base of tools if they do not have data exchange mechanisms already in 

http://ctakes.apache.org/
https://bioportal.bioontology.org/
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place, in which case they can be installed as services. Some of the more widely useful tools that 
might be prioritized include: 

• TARSQI Toolkit (TTK): A tool for identifying both temporal expressions and temporal 
associations within text. 

• Med-TTK: An adaptation of the TARSQI Toolkit to provide better coverage of various 
date formats commonly found in clinical text. 

• MetaMap: A system for encoding text into a structured clinical terminology, namely the 
Unified Medical Language System (UMLS). 

Figure 5 shows a general outline of the tools currently available in the prototype version, and 
Figure 6 illustrates the components that may support the synthesis of NLP pipelines for the 
extraction of clinical and time information as well as the identification of temporal relations. 
Those are some of the use cases described above. Again, the final version of the Workbench can 
include more components and support the creation of multiple pipelines. 

 
Figure 5. The tools and available connections between tools in the current pilot version of the core NLP 
approach. 



 35 

 

 
Figure 6. The tools and available connections between some of the tools planned to be developed in the 
second year for the core NLP approach. 

10 Example NLP Pipelines 

The following list includes all the possible pipelines using one or multiple tools that are 
supported in the CLEW prototype. Some pipelines may only contain tools from a subset of 
categories but still meet specific clinical needs. 

• ETHER Clinical Feature Extraction 
• BioPortal Annotator (using one or more ontologies) 
• cTAKES Clinical Feature Extraction 
• cTAKES Clinical Feature Extraction + cTAKES Temporal 
• ETHER Clinical Feature Extraction + ETHER Temporal 
• BioPortal Annotator (using one or more ontologies) + ETHER Temporal 

In addition to these examples, the BioPortal Annotator in the CLEW prototype can be 
parameterized (it supports the coding to more than 500 ontologies/terminologies), making the 
number of possible configurations much larger. 

A few of these possible pipelines are demonstrated in Appendix J by applying them to a vaccine 
safety report and a pathology report excerpt. Two different pipelines with similar goals are run 
on each sample text, and the resulting output is compared. 

11 Discussion 

This report presents the requirements, architecture, and current implementation of the core NLP 
approach. The approach is flexible for adapting and incorporating NLP tools for many clinical 
activities across different domains, which have been identified through a comprehensive 
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environmental scan. A subset of these tools, chosen for their applicability to specific use cases 
for safety surveillance and cancer pathology processing, are now prepared for use. They have 
been tested and made available through a CLEW prototype, which allows for the construction of 
multiple NLP pipelines that can combine components of separate tools. All of the current tools 
are also accessible through straightforward Java APIs that allow them to be programmatically 
accessed by developers of other software tools and applications. 

The ES has provided a long list of tools that are potentially useful in building pipelines for 
various clinical NLP domains. We will add support for additional tools and looking especially at 
the processing of cancer reports with tools like caTIES, MedKATp, and others. The analysis of 
pathology reports can be advanced by investigating a variety of pipeline configurations that best 
identify pertinent SERs. We will also be further exploring methods for visualizing results from 
the CLEW to identify the best methods for certain use cases. 

In terms of evaluating tools and pipelines, the best-performing NLP pipelines were identified for 
a small set of cancer and safety surveillance use cases only. The corresponding evaluation for all 
use cases described in this report and others that may be supported by the CLEW is beyond the 
scope of this project. End users (federal agencies, public health agencies, academic centers, and 
PCORnet) will be using the Workbench to create, evaluate, and select the best pipelines for their 
own work. 
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Appendix A: UIMA Framework 

The Apache UIMA framework is a comprehensive architecture for text analysis and 
interpretation with a specification that has been approved by the Organization for the 
Advancement of Structured Information Standards consortium. It has been used extensively in 
the development of many NLP tools, as found in our environmental scan. UIMA provides a 
means for independent components to communicate and operate as part of a single pipeline by 
sharing a common data structure. 

UIMA data can be transmitted easily in XML Metadata Interchange (XMI) format, which 
standardizes a structured XML document for containing the textual information, any type of 
data/feature type, and annotation results. The XMI format can be used easily for internal 
communication with other tools that have not been following the UIMA framework. 

Annotations must be based on a Common Analysis Structure (CAS) that defines the parameters 
available for the annotations. All feature structures, including annotations, are represented in the 
UIMA Common Analysis Structure (CAS)1. The CAS is the central data structure through which 
all UIMA components communicate. 

The first step in developing an annotator based on the UIMA framework is to define the CAS 
Feature Structure types. This is done in an XML file called a type system descriptor, which may 
be tailored to various domain applications by including domain-specific definitions. 

A VAERS Data Type System descriptor has been initially defined and developed for the CLEW 
(see Appendix B). This data type system is based on the UIMA primitive data types and contains 
additional data types and features in the safety surveillance domain that have been defined 
hierarchically. 

One important benefit of the hierarchical structure of the type system is the possibility for 
straightforward extensions via inheritance to represent data types in other domains. The existing 
data types can be extended to allow new attributes and new annotation types. More details about 
inheritance and expanding the type system can be found in Appendix B. 

As specified above, the VAERS Data Type System is able to represent the VAERS safety 
surveillance domain. This type system can be combined with the data specifications of other 
general NLP components like tokenizers or taggers to further enable data exchange among the 
NLP components for domain-specific NLP pipelines. As an example, the output for the report 
text “102.3 Fever (lasted 2 days). 1/1/2016 Rash on trunk and face” may be stored in an XML 
file with proper namespace definitions and feature type definitions as shown below. 

 

                                                 
1 UIMA Tutorial and Developers' Guides. https://uima.apache.org/  

https://uima.apache.org/
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<?xml version="1.0" encoding="UTF-8"?> 
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" 
xmlns:vaers="http:///gov/hhs/fda/srs/annotation/vaers.ecore" 
xmlns:tcas="http:///uima/tcas.ecore" xmlns:cas="http:///uima/cas.ecore"> 

<cas:NULL xmi:id="0"/> 
<tcas:DocumentAnnotation language="en" xmi:id="1" sofa="6" end="61" begin="0"/> 
<vaers:Symptom xmi:id="2" sofa="6" end="11" begin="6"/> 
<vaers:Symptom xmi:id="3" sofa="6" end="60" begin="38"/> 
<cas:Sofa xmi:id="6" sofaString="102.3 Fever (lasted 2 days). 1/1/2016 Rash on trunk 

and face." sofaNum="1" sofaID="_InitialView" mimeType="text"/> 
<View sofa="6" members="0 1 2 3"/> 

</xmi:XMI> 
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Appendix B: The VAERS Data Type System 

The VAERS Data Type System created for the CLEW is defined hierarchically. In other words, 
every data type is defined based on inheritance from a super-type. All new types inherit the 
attributes of their super-type. For example, the UIMA base annotation uima.tcas.Annotation is 
the super-type of the highest abstract type in the VAERS Data Type System, 
gov.hhs.fda.srs.annotation.vaers.VaersFeature. The other types in the VAERS Data Type 
System are then all defined as nested sub-types of that type. The first column of Table B1 shows 
the level of abstraction of a particular type name in the VAERS Data Type System; the second 
column shows the name of the data type; and the third column lists the super-type of the data 
type. 

Table B1: The VAERS Data Type System defined for the CLEW prototype. 

Level Data Type Name Super-Type 
1 gov.hhs.fda.srs.annotation.vaers.VaersFeature uima.tcas.Annotation 
2 gov.hhs.fda.srs.annotation.vaers.ClinicalFeature gov.hhs.fda.srs.annotation.vaers.VaersFeature 

gov.hhs.fda.srs.annotation.vaers.RelationFeatur
e 

 

gov.hhs.fda.srs.annotation.vaers.TemporalFeatu
re  

 

gov.hhs.fda.srs.annotation.vaers.VaersSummari
zation 

 

3 gov.hhs.fda.srs.annotation.vaers.CategoryCause
OfDeath 

gov.hhs.fda.srs.annotation.vaers.ClinicalFeature 

gov.hhs.fda.srs.annotation.vaers.CategoryDiagn
osticFeatures 

 

gov.hhs.fda.srs.annotation.vaers.CategoryFamil
yHistory 

 

gov.hhs.fda.srs.annotation.vaers.CategoryMedic
alHistory 

 

gov.hhs.fda.srs.annotation.vaers.CategoryMedic
alProduct 

 

gov.hhs.fda.srs.annotation.vaers.CategoryStatus  
4 gov.hhs.fda.srs.annotation.vaers.Drug gov.hhs.fda.srs.annotation.vaers.CategoryMedic

alProduct 
gov.hhs.fda.srs.annotation.vaers.Vaccine  

4 gov.hhs.fda.srs.annotation.vaers.PrimaryDiagno
sis 

gov.hhs.fda.srs.annotation.vaers.CategoryDiagn
osticFeatures 

gov.hhs.fda.srs.annotation.vaers.RuleOutDiagn
osis 

 

gov.hhs.fda.srs.annotation.vaers.SecondLevelDi
agnosis 

 

gov.hhs.fda.srs.annotation.vaers.Symptom  
3 gov.hhs.fda.srs.annotation.vaers.Date gov.hhs.fda.srs.annotation.vaers.TemporalFeatu

re 
gov.hhs.fda.srs.annotation.vaers.Frequency  
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Level Data Type Name Super-Type 
gov.hhs.fda.srs.annotation.vaers.Duration  
gov.hhs.fda.srs.annotation.vaers.Relative  
gov.hhs.fda.srs.annotation.vaers.Time  
gov.hhs.fda.srs.annotation.vaers.Weekday  

3 gov.hhs.fda.srs.annotation.vaers.FeatureTimeRe
lation 

gov.hhs.fda.srs.annotation.vaers.RelationFeatur
e 
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Appendix C: Lessons Learned Working with cTAKES 

The cTAKES system provides many useful functionalities for text analytics, but this also makes 
it a complex system with a daunting learning curve. The available documentation does not 
always adequately prepare readers to use the system properly, and at least one major software 
bug presented significant challenges for incorporating cTAKES into our project. 

The integration of cTAKES in the CLEW involved preparing a Java API to be accessible as a 
web service or as part of a domain-specific Java application. To accomplish this, we wanted to 
incorporate cTAKES into a Maven project via a simple POM dependency. However, an ongoing 
bug in cTAKES versions 4.0.0 and 4.0.1 prohibited it from being included as a Maven POM 
dependency, causing a “URI is not hierarchical” Java exception when an application attempts to 
load cTAKES through the POM mechanism. 

To resolve this issue for the current development of the CLEW, we implemented a two-part 
solution that included making minor modifications to cTAKES source code and generating a 
new JAR file to replace the distributed version, and placing additional resource files into the 
“resources” directory of the target project structure. With these two changes, the current CLEW 
project was able to incorporate cTAKES through a POM dependency. This is not necessarily a 
general workaround, and other applications may require different approaches. 

A revision to the cTAKES source code would allow third-party developers to leverage cTAKES 
for integration with their domain applications.  
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Appendix D: Environmental Scan List of Tools 

The combination of the literature and the multi-channel review resulted in a final list of 54 tools 
(16 complete systems, 26 applications, and 12 components). As shown in Table D1 below, 
significant development activity around the GATE and UIMA frameworks was noted, and all 
tools supported have either multiple or very specific functions. The tools also spanned a wide 
range of methodologies, including rule-based, machine learning, and hybrid approaches. A 
complete discussion on the ES findings can be found in the corresponding deliverable. 

Table D1. The final list of 54 tools identified in the environmental scan. Each tool belongs to one of the 
three categories (complete system, application, or component). Tools may provide more than one 
function, and several tools have been developed to be consistent with a specific framework. 

Tool Acronym Tool Category Function Framework 

ClearTK Complete System Multiple UIMA 
cTAKES  Complete System Multiple UIMA 
GATE Complete System Multiple, SER GATE 
GENIA Tagger Complete System Multiple GATE 
HITEx Complete System Multiple GATE 
IXA pipes Complete System Multiple  

KNIME Complete System Multiple  

Leo Complete System Multiple UIMA 
MedEx Complete System Multiple  

MetaMap Complete System Multiple  

Neji Complete System Multiple  

NERsuites Complete System Multiple  
NLTK  Complete System Multiple, SER NLTK 
OpenNLP Complete System Multiple OpenNLP 
Stanford CoreNLP Complete System Multiple, SER  

Weka Complete System Multiple  

ABNER Application NER  

BioEnEx Application NER  

BioLemmatizer Application S/L UIMA 
BioMedICUS Application NER UIMA, OpenNLP 
Bio-SCoRes Application CR  

BioSimplify Application Sentence Simplification  

caTIES Application NER GATE 
CliNER Application NER  

CRIS-IE-Smoking Application NER GATE 
i2b2 Application Multiple GATE 
Lancet Application NER  
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Tool Acronym Tool Category Function Framework 

Maveric Annotator Application NER UIMA 
MedCoref Application CR UIMA 
medKATp Application NER  

MedTagger Application NER UIMA 
MedXN Application NER UIMA 
MIST Application De-id  

NLP Pipelines Application NER UIMA 
PEP Application NER UIMA 
PubMed-Ex Application NER  

pyConText Application NER  

RapTAT Application NER GATE 
TagLine Application NER  

THYME Application NER & TER  

TTK Application TER   

V3NLP Application NER  

BADREX Component Abbr Norm GATE 
brat Component Annotation  

ConText/NegEx Component Neg Detection  

eHOST Component Annotation  

Genia SS Component Chunking GATE 
GUTime  Component TER  

HeidelTime Component TER UIMA 
Knowtator Component Annotation  

MedTime  Component TER UIMA 
MSTParser Component Parsing  

Noun Phrase Chunker Component Chunking  

TreeTagger Component POS Tagging GATE 
TER: Temporal entity recognition; POS: Part of speech; Neg: Negation; Abbr Norm: Abbreviation normalization; 
NER: Named entity recognition; CR: Coreference resolution; S/L: Stemming/lemmatization; De-id: De-
identification; SER: Semantic entity recognition. 

  



 45 

 

Appendix E: Cancer Pathology Pilot Project 

E.1 Services 
Four pathology services were developed using Stanford, OpenNLP, Gate, and cTAKES. The 
services address the needs of cancer registries and other clinical researchers to convert text into 
categorical data or codes. The Clinical Entity Recognition (CER) service identifies the same 
information that may be written differently in pathology reports. Organizations can use the 
Pathology Coding Service to complete the conversion from text to code. The four services can be 
used to demonstrate differences between different pathology datasets using different pipelines. 

E.2 Identified Semantics 
The pathology services are designed to supply codes for five key data elements: 

• Body site of the cancer. 
• Histology. 
• Grade of disease. 
• Behavior of the cancer. 
• Laterality or side of the body where it is located. 

The CER service supplies 22 different entities of information including structural information 
about the document, which is necessary for finding the best location to extract the desired 
content. 

The different clinical entities identified in the CER service are filtered down to those that are 
most useful for deriving the wanted codes. 

E.3 Approach to Address the Use Case 
This use case applies to organizations that want to extract content from pathology reports and 
code that content. The service is split into two services so that the CER can be assessed 
independently from the Pathology Coding Service process. 

E.4 Cancer Pathology Demonstration 
Four cancer pathology pipeline demonstrations are provided in the CLEW. They illustrate how 
NLP rule-based and machine learning solutions work. Figure E1 shows how the input of 
unstructured data is analyzed along with the output produced. 
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Figure E-1: Stages of the pathology demonstrations 

1. HL7 Input: Convert the HL7 input file into a standardized (LIF) format. 

2. CLEW/LAPPS Workflow: Use CLEW/LAPPS Grid tools below to generate a standardized 
file (BIO file) with post-processing tools to modify the output of some of the pipeline steps 
for the clinical domain. 

• Tokenizer 
• Sentence splitter 
• POS tagger 
• Chunker 
• HLA feature extractor 

3. Output: Use Conditional Random Field (CRF) and the previously trained model and output 
the standardized annotated content TXT file with: 

• Semantic tag name 
• Entity text, start 
• End position of entity text 
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E.5 Sample Cancer Pathology Demonstration Using Stanford Pipeline 
In the Input field, select a sample cancer report provided that contains important clinical and 
temporal cancer patient information, or select My data input to enter input data. 

HL7 data for selected input 

Note that metadata is at the top of the file, but not processed through the pipeline. It is used by 
the pathology laboratory to supply information about the content needed for the management of 
the pathology that does not refer to the clinical content itself. It contains identification of the 
patient, the pathology service, and time and date stamps for different actions taken in completing 
the report, plus a brief summary. Different laboratories insert different information in the 
metadata, so it has a variable structure. 

document_text=OBX|1|TX|22638-1^Comments^LN||Comment||||||F|||20150901172804 
OBX|2|TX|22636-5^Clinical History^LN||ClinicalInformation||||||F|||20150901172804 
OBX|3|TX|22633-2^Nature of Specimen^LN|1|Colon- Random biopsy (Sample 
2)||||||F|||20150901172804 
OBX|4|TX|22634-0^Gross Pathology^LN|1|Specimen is received in formalin, labeled as 
"Random Colon" with the patient's name and consists of 26 pieces of soft pink tissue 
measuring from 0.1 x 0.1 x 0.1 up to 0.6 x 0.2 x 0.1 cm. All submitted (6 Blocks). 
Blocks #1-3- 5 pieces each Blocks #4-5- 4 pieces each Block #6- 3 
pieces.||||||F|||20150901172804 
OBX|5|TX|22637-3^Final Diagnosis^LN|1|Colonic mucosa showing a few lymphoid 
aggregate. No cryptitis, no crypt abscesses, no glandular distortion and no dysplasia 
seen.||||||F|||20150901172804 
OBX|6|TX|22633-2^Nature of Specimen^LN|2|Colon-Sigmoid biopsy (Sample 
3)||||||F|||20150901172804 
OBX|7|TX|22634-0^Gross Pathology^LN|2|Specimen is received in formalin, labeled as 
"Sigmoid Polyp" with the patient's name and consists of 1 piece of soft pink tissue 
measuring 1.4 x 1.0 x 0.9 cm. Also received a stalk measuring 0.4 x 0.4 cm. Sectioned 
and entirely submitted (5 Blocks).||||||F|||20150901172804 
OBX|8|TX|22637-3^Final Diagnosis^LN|2|Fragments of tubulovillous adenoma with 
intramucosal adenocarcinoma/high grade dysplasia. The stalk margin is free of high 
grade dysplasia and intramucosal carcinoma.||||||F|||20150901172804 
 
Select the Pipeline 

After choosing the input to process, select a NLP pipeline of interest to perform various clinical 
NLP tasks on the input. 

Pipelines to select from include: 

• Stanford 
• OpenNLP 
• Gate 
• cTAKES 
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Stanford Pipeline Description 

1. Convert the HL7 file into an extracted TXT file. 

2. Convert the TXT file into LIF format. 

3. Run Stanford Tokenizer in LAPPS. 
The tokenizer identifies each individual word and non-word string. It can be confused by 
various punctuation and numeric content and unusual orthography. 

4. Run HLA Post Tokenizer Corrector for Stanford. 
The corrector step modifies some of the output to correct for certain known gross errors 
that it makes on clinical texts. 

5. Run Stanford Sentence Splitter in LAPPS. 
The sentence splitter separates the text into sentences. It can be misled by various format 
layouts, unusual use of punctuation, and lack of punctuation. 

6. Run HLA Post Sentence Splitter Corrector for Stanford. 
The corrector unit corrects some of the known gross mistakes the splitter makes on 
clinical texts. 

7. Run the Stanford POS Tagger in LAPPS. 
The POS tagger assigns a part of speech to each token. It marks any word not recognized 
as a noun. POS tagging enables some recognition of the relationships between words, but 
has some uncertainty because words can be used as different parts of speech without 
changing their morphology; for example, the verb “weeping” can be used as an adjective 
in “weeping sore.” 

8. Run the GATE Chunker in LAPPS. 
The chunker aggregates multiple tokens into a single phrase. This assists in recognizing 
clinical descriptions. 

9. Send GATE chunks to MetaMap for initial concept recognition. 
MetaMap is a system for recognizing clinical concepts and assigning them code values 
from a range of clinical classification systems. These codes are attached as features to the 
tokens in the text chunk created in step 8. 

10. Run the HLA Feature Extractor for Stanford. 
When all of the NLP processing is complete, the computed values for each token are 
assembled as a set of features. These are used to generate a file with one token per line 
where each token has all its attributes/features assigned. The last step is to attach the 
semantic class of the token iterated in the annotation step and assign it to the beginning of 
the annotation (B-class), an intermediate position (I-class), or not tagged at all (O-class). 
This file is called the BIO file and is input directly into the machine learning algorithm. 

11. Generate the BIO file. 

12. Send the BIO file to the service. 

13. The service returns the extracted clinical entities with semantic tag name, entity text, and 
start and end position of entity text in the TXT file. 
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Cancer Pathology CER Service Demonstration Output 

After the CLEW processes the text through the workflow defined in the selected pipeline, the 
compiled information in Table E-1 below serve as output that can be used at this point or can be 
passed as input to the Cancer Pathology Coding Service to convert the text to standard ICD-O-3 
codes for use. See Appendix F to see how the output from the Pathology Coding Service is 
received from the CLEW in eMaRC Plus. 

Table E-1. Cancer pathology CER service demonstration output from the CLEW Stanford 
Pipeline. 

Tag Name Content Start Stop 
Final Diagnosis Heading Final Diagnosis 608 623 
Final Diagnosis Heading Final Diagnosis 757 772 
Clinical History Heading Clinical History 1071 1087 
Cancer Histology Subtype tubulovillous 787 800 
Macroscopic/Gross Description Heading Gross Pathology 31 46 
Macroscopic/Gross Description Heading Gross Pathology 338 353 
Cancer Histology Type adenocarcinoma 827 841 
Cancer Histology Type carcinoma 930 939 
Comments Heading Comments 1051 1059 
Specimen Identifier Sample 2 985 993 
Specimen Identifier Sample 3 1039 1047 
Organ/Body Structure Colon 963 968 
Organ/Body Structure Colon 1017 1022 
Neoplasm Behaviour intramucosal 814 826 
Nature of Specimen Heading Nature of Specimen 943 961 
Nature of Specimen Heading Nature of Specimen 997 1015 
Relative Location Sigmoid 1023 1030 
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Appendix F: eMaRC Plus 

Central cancer registries use eMaRC Plus  to receive and process cancer pathology and 
biomarker data in unstructured narrative format in HL7 version 2 messages. Currently, eMaRC 
Plus provides integrated rule-based text mining functionality to translate text to code. While this 
has been useful in the cancer community and with the improvements in processing unstructured 
data in the NLP community, expansion in the eMaRC functionality would allow for the 
implementation of machine learning methodologies to improve the quality of its coding. 

F.1 Scope 
eMaRC Plus was enhanced to interface with the CLEW web services to process unstructured 
pathology data and return coded data for primary site, histology, behavior, grade, and laterality. 

F.2 Description of System Enhancements 
eMaRC Plus allows users to use either the rule-based text mining method, the CLEW web 
services for SNLP and coding methods, or both methods of coding the attributes during import of 
pathology reports. Adding this option allows current eMaRC Plus users to continue using the 
application to process pathology reports that can contain any type of cancer cases, while the 
CLEW web service developers target and fine-tune the language model to target specific types of 
cancers, including lung, breast, prostate, and colorectal. See Figure F-1 below for a glance at 
what the cancer registry user sees when processing pathology reports within eMaRC Plus. 
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Figure F-1. Screen shot of eMaRC Plus that shows the pathology report text on the left side and 
the resulting coded data for primary site, laterality, histologic type, behavior code, and grade on 
the right. 

When both coding options are enabled, eMaRC Plus uses results from both methods to highlight 
terms in the pathology text and for coding the five attributes, and provides a way to compare 
results of both methods. Figure F-2 below shows the CLEW annotation and coded values 
returned to eMaRC Plus. The highlighted terms in the user interface have different color borders 
around them to indicate whether the current text-mining method or CLEW SNLP method found 
them. 



 52 

 

 
Figure F-2. Screen shot of eMaRC Plus with resulting CLEW annotations and suggested coded 
values from processing the sample pathology report.  
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Figure F-3 shows where users can provide their inputs to create a feedback loop to further train 
the language model so that it improves accuracy in the next iteration. 

 
Figure F-3. Screen shot of CLEW Feedback screen in eMaRC Plus where the user can provide 
feedback on the accuracy of annotation and coding elements of the pathology report.  



 54 

 

Appendix G: ETHER 

ETHER was modified to be compatible with the CLEW architecture by separating some of the 
key components of the tool, so they could be executed independently. The separate services 
include the extraction of clinical features, the extraction of temporal expressions, and the 
creation of temporal associations between features and expressions. Each service requires a plain 
text input and returns an XML output file listing the identified features, expressions, or 
associations that conform to the VAERS Data Type System discussed in Section 6. 

The ETHER components have been modularized as different functions and can be executed with 
the following commands: 

(1) To extract clinical features: 
ETHERNLP.exe –e textInput.txt featureOutput.xml 

(2) To extract temporal features: 
ETHERNLP.txt –t textInput.txt timeOutput.xml 

(3) To extract clinical-temporal association features, in short, relation features: 
ETHERNLP.txt –r featureOutput.xml timeOutput.xml relOutput.xml 

For the parameters of the commands, “textInput.txt” is the input file that contains the text to be 
processed, “featureOutput.xml” is the name of an output file to contain the annotation results of 
extracted clinical features, “timeOutput.xml” is the name of an output file to contain the 
annotation results of extracted temporal expressions, and “relOutput.xml” is the name of an 
output file to contain the annotation results of extracted clinical-temporal associations. The 
actual filenames for processing are supplied by the user. 

G.1 Use Cases Satisfied 
ETHER supports the use cases 4.1 Identification of Clinical Information in Text, 4.3 
Identification of Temporal Relations, and 4.4 Automated Case Summarization. 

G.2 Use of ETHER in the CLEW for End Users 
The ETHER components for the clinical, temporal, and relation functions have been integrated 
into the CLEW prototype (FDA’s development environment) as shown in Figure G-1. 
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Figure G-1. A screen shot of the selection of the ETHER modules in the CLEW prototype. 

After loading the data (first tab; process not shown in the screenshot), a user can select the 
Clinical NER and Temporal Info Extractor components. As shown in Figure G-1, “ETHER-
Clinical-NER” and “ETHER-Temporal/Relation” components have been selected from the 
“Clinical NER” and “Temporal Info Extractor” categories, respectively. Following the synthesis 
of the NLP pipeline that supports the retrieval of the clinical and temporal information, the user 
can click the “Next” button located at the lower-right corner of the screen. The CLEW executes 
the synthesized NLP pipeline and display the results in the “Save/Export Data” tab of the 
window (not shown in Figure G-1). 

Notably, users can select the “ETHER-Clinical-NER” component to carry out the clinical NER 
alone. The same applies to “ETHER-Temporal/Relation” that can support a single-component 
pipeline as well. 

G.3 Integration of the ETHER Functions in Domain Applications for Developers 
The ETHER modules can be currently employed by end users in the CLEW prototype running 
locally in the FDA’s development environment. They can be further used by system or software 
developers to implement high-level applications tailored to specific subdomains in a local or a 
web environment. 
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The ETHER modules have been wrapped as very straightforward Java APIs for achieving 
maximal interoperability and portability. They can be used by software developers in clinical 
applications and are utilized by the CLEW prototype to realize the functionalities shown in 
Figure G-1. 

Specifically, the ETHER clinical, temporal, and relation functionalities have been wrapped as 
three Java functions that can be called in a target Java application class. The inputs and outputs 
for each function are specified below. 

1. String processETHERClinical(String input) 
This function accepts a string containing the input text and generates a string that 
contains the annotation results of clinical features using the VAERS Data Type System. 

2. String processETHERTemporal(String input) 
This function accepts a string containing the input text and generates a string that 
contains the annotation results of temporal features using the VAERS Data Type System. 

3. String processETHERRelation() 
This function does not accept any parameters. Instead, it makes use of the clinical and 
temporal results from the previous two functions, and generates a string that contains the 
annotation results of association relationship features using the VAERS Data Type 
System. 

In a target application, if a pipeline is intended to obtain clinical features only, the first function 
needs to be called alone. If a pipeline is intended to only obtain temporal features, the second 
function needs to be called alone. However, if a pipeline is intended to obtain the association 
relationships, both of the above functions need to be called, and after these two functions finish, 
the third function also needs to be called. 

A Maven project has been created to include the ETHER modules. Key Maven commands have 
been tested via JUnit test cases, such as ‘mvn clean install’ and ‘mvn test’. 

In terms of code distribution and maintenance, there is a single requirement to place the ETHER 
distribution package under the “resources” directory of the target program. There is no 
requirement for any other software installation (except for the latest versions of Java and Maven) 
or environmental variable setup to execute the ETHER modules. The ETHER distribution is a 
zipped package, named “ETHERNLP.zip”2. A developer can download it, extract the package 
into suitable directory, and copy the directory along with the underlying directory hierarchy and 
all the underlying files into the “resources” folder of the target program. 

  

                                                 
2 Available at the official FDA and CDC GitHub pages (after the release of the CLEW prototype). 
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Appendix H: cTAKES 

FDA integrated cTAKES version 4.0 into their version of the CLEW prototype and exposed its 
functions to retrieve clinical named entities and temporal information through our API 
infrastructure. Specifically, the main cTAKES clinical and temporal pipelines have been 
wrapped as Java functions that accept textual clinical notes as input and generate UIMA CAS 
structures as output. 

H.1 Use Cases Satisfied 
cTAKES supports the use cases 4.1 Identification of Clinical Information in Text, 4.2 
Normalization/Coding to Medical Terminologies, and 4.3 Identification of Temporal Relations. 

H.2 Use of cTAKES in the CLEW for End Users 
The cTAKES clinical and temporal extraction capability has been integrated into the CLEW 
prototype (FDA’s development environment) and can be executed easily by end users as shown 
in Figure H-1. 

After loading the data (first tab; process not shown in the screenshot), a user can select either 
“cTAKES-Clinical-NER” from the Clinical NER category (not shown) or “cTAKES-Temporal” 
from the Temporal Info Extractor category (as shown in Figure H-1). Following the synthesis of 
the NLP pipeline that supports the retrieval of the clinical and/or temporal information, the user 
can click the “Next” button located at the lower-right corner of the screen. The CLEW executes 
the synthesized NLP pipeline and display the results in the “Save/Export Data” tab of the 
window (not shown in Figure H-1). 

Notably, users can select the “cTAKES-Clinical-NER” component to carry out the clinical NER 
alone. Selecting the “cTAKES-Temporal” component executes both the clinical and temporal 
aspects of cTAKES in a single pipeline. 
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Figure H-1. A screen shot of the selection of the cTAKES Temporal module in the CLEW 
prototype. 

i. Integration of cTAKES in Domain Applications for Developers  
The cTAKES modules can be currently employed by end users in the CLEW prototype running 
locally in the FDA’s development environment. They can be further used by system or software 
developers to implement high-level applications tailored to specific subdomains in a local or a 
web environment. 

The cTAKES modules have been wrapped as very straightforward Java APIs for achieving 
maximal interoperability and portability. They can be used by software developers in clinical 
applications and are utilized by the CLEW prototype to realize the functionalities shown in 
Figure H-1. 

Specifically, a Java utility class named “CTakesAnnotatorForVAERS” has been developed to 
accommodate the initialization and use of cTAKES. The Java utility class is instantiated in order 
to initialize cTAKES and enable calls to the specific functions for cTAKES functionality. The 
inputs and outputs of each function, as well as the sample code for the instantiation step are 
specified below. 
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1. To get an object of the CTakesAnnotatorForVAERS utility class: 

CTakesAnnotatorForVAERS ctakesAnno = new CTakesAnnotatorForVAERS(); 
This statement instantiates a new Java object of the utility Java class. 

2. The cTAKES temporal pipeline initialization function: 
void initializeCTAKES(); 
This initialization process carries out suitable configurations and loads necessary 
resources for the full cTAKES temporal pipeline. This Java function does not take any 
input and does not return any value as output. 

3. The cTAKES clinical pipeline initialization function: 
void initializeCTAKESClinicalNER(); 
This initialization process carries out suitable configurations and loads necessary 
resources for the full cTAKES clinical pipeline. This Java function does not take any 
input and does not return any value as output. 

4. The cTAKES execution function: 
CAS cTAKESAnno.processDocument(String input); 
This function takes an input string of clinical text and generates annotation results of 
extracted temporal features, as well as clinical features based on the initialization 
function executed. 

A Maven project has been created to include the cTAKES modules. Key Maven commands have 
been tested via JUnit test cases, such as ‘mvn clean install’ and ‘mvn test’. 

In terms of code distribution and maintenance, there is no requirement of any software 
installation (except for the latest version of Java and Maven) or environmental variable setup to 
execute the cTAKES functions. A few environmental variables have been specified in the 
executable file (such as the run.bat file included in the CTAKESService package distribution) 
that enable the execution of cTAKES from the command line. For software development, the 
Maven project allows the inclusion of related projects and libraries in Java to be taken care of by 
the Maven dependency management mechanism. For example, if a target application is 
developed using Java and Maven, the POM.xml file contains the dependencies, and the relevant 
libraries can be downloaded and included automatically. 
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Appendix I: BioPortals 

The CLEW prototype (FDA’s development environment) provides parameter configurations for 
the BioPortal Annotator, including the ontologies and UMLS semantic types. The BioPortal 
contains 588 biomedical ontologies and related datasets, as shown in Figure I-1. These cover a 
broad variety of clinical domains and include many of the most widely used clinical 
terminologies. The completeness of the provided ontologies nor the veracity of the coding 
process have not been evaluated. Evaluations related to the performance of specific pipelines 
were conducted in Year 2. 

 
Figure I-1. A screen shot of the BioPortal statistics. 

I.1 Use Cases Satisfied 
The BioPortal Annotator supports use cases 4.1 Identification of Clinical Information in Text and 
4.2 Normalization/Coding to Medical Terminologies. It may also support other activities as part 
of a larger pipeline. 

I.2 Use of BioPortal in CLEW for End Users 
The BioPortal service has been integrated as part of the CLEW prototype (FDA’s development 
environment) as shown in Figure I-2. 

Users can access the biomedical ontology coding service with some of the same features 
provided in the BioPortal web interface in the CLEW prototype. After loading the data (first tab; 
process not shown in the screenshot), a user can select “NCBO-Clinical-NER” from the Clinical 
NER category and then add one or more ontologies and UMLS types (as shown in Figure I-2). 
The “NCBO-Clinical-NER” is currently the only component in the CLEW prototype that requires 
some configuration, which is supported by the right panel. The user must click on the “Start 
Coding” button first, and the software runs the BioPortal coding service automatically. After the 
completion of the coding process, the user may click the “Next” button located at the lower-right 
corner of the screen. The CLEW executes the synthesized NLP pipeline and displays the results 
in the “Save/Export Data” tab of the window (not shown in Figure I-2). 
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The “NCBO-Clinical-NER” can be used alone or in combination with other components and can 
support both clinical NER and information normalization (as shown in Figure I-2). 

 
Figure I-2. A screen shot of the selection of the NCBO BioPortal Clinical Annotator using the 
SNOMEDCT ontology parameter in the CLEW prototype. 

I.3 Integration of the BioPortal Annotation Function in Domain Applications for 
Developers 
The BioPortal coding service is available to end users in the CLEW prototype running locally in 
the FDA’s development environment. System or software developers can use it to implement 
high-level applications tailored to specific subdomains in a local or a web environment. 

The BioPortal Rest API has been wrapped as a very straightforward Java API for achieving 
maximal interoperability and portability. This can be used by software developers in clinical 
applications and is utilized by the CLEW prototype to realize the functionalities shown in Figure 
I-2. 

Only one initialization and one processing statement is used the coding features in a target Java 
class; inputs and outputs are specified below. There is also one utility function. 

• Initialization:  
EncodeText et = new EncodeText(); 
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• Processing:  
exec(String rawText, ArrayList<String> selectedOntologies, ArrayList<String> 
selectedUMLS) 
o Inputs: 
 rawText: text to process 
 selectedOntologies: array list containing selected ontologies (acronyms), such as 

“MEDDRA” and “ETHER” 
 selectedUMLS: selected UMLS semantic types (“T200” for example) 

o Return: HashMap<String, Term>; a hash map between word (words) of interest 
(lower case) and a TERM class 
 Hash map key: {word(s)_fromPosition}. For example: pain_49 indicates a word 

pain (starting position in the text is 49). 
 Hash map value: Term class structure. 

• word: word(s) of interest 
• from: starting position in text (>=1) 
• to: ending position in text 
• strType: a term being mapped to 
• strCls: preferred label 
• ontology: ontology being used 
• context: the context for the word(s), determined by the range parameter 

• A utility function: getNCBOOntologyList(): return the object of the OntologyList 
structure, in which a user can access the list of ontology names, the list of acronyms or 
the mapping between them. For example: 
o et.getNCBOOntologyList().name <*** et is an instance of the EncodedText class 

mentioned above. ***> 
o et.getNCBOOntologyList().acrononym 

Please note that there are variations when initializing the EncodeText class: 

• If a user wants to download the ontology list from the BioOntology web site, call “new 
EncodeText(true)”. By default, the list has been downloaded and saved as 
resources\ontology\OntologyList.txt. 

• To change the size of the context window around the word(s) of interest for display, 
provide an integer value to the constructor (default is 10) to indicate how many characters 
before/after the current word(s) are to be shown by calling 

o new EncodeText(int range) or 
o new EncodeText(boolean updateNCBOOntology, int range) 

In terms of code distribution and maintenance, there is no requirement of any software 
installation (except for the latest version of Java and Maven) or environmental variable setup to 
execute the BioPortal coding function. For software development, a Maven project allows the 
inclusion of related projects and libraries in Java to be taken care of by the Maven dependency 
management mechanism. For example, if a target application is developed using Java and 
Maven, the POM.xml file contains the dependencies, and the relevant libraries can be 
downloaded and included for compilation and execution purposes automatically. 
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Appendix J: Examples of Shared NLP Pipelines and Web Services 

The following list includes all of the possible pipelines using one or more tools that can be made 
and that are fully supported in the CLEW prototype. Some pipelines may only contain tools from 
a subset of categories, but still meet specific clinical needs. 

• Pathology Annotator 
• Pathology Coder to ICD-O-3 
• ETHER Clinical Feature Extraction 
• BioPortal Annotator (using one or more ontologies) 
• cTAKES Clinical Feature Extraction 
• cTAKES Clinical Feature Extraction + cTAKES Temporal 
• ETHER Clinical Feature Extraction + ETHER Temporal 
• BioPortal Annotator (using one or more ontologies) + ETHER Temporal 

In addition to these examples, the BioPortal Annotator in the CLEW prototype can be 
parameterized (it supports the coding to more than 500 ontologies/terminologies), making the 
number of possible configurations much larger. 

A few of these possible pipelines are demonstrated in the following subsections by applying 
them to a vaccine safety report and a pathology report excerpt. Two different pipelines with 
similar goals are run on each sample text, and the resulting output is compared. 

J.1 Safety Surveillance Example 
For this example, we are using the sample vaccine safety report from Section 4.1 and extracting 
clinical and temporal features using two different pipelines. The CLEW prototype is used to run 
both of these examples. The first pipeline is: 

• ETHER Clinical Feature Extraction + ETHER Temporal 

First, we load the text of this report into the CLEW prototype, as shown in Figure J-1. Then we 
make the appropriate tool selections to apply the separate pieces of the ETHER tool, as shown in 
Figure J-2. Then, after running, the CLEW prototype produces the output XML files containing 
the marked annotations and the temporal associations between clinical features and temporal 
expressions. 
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Figure J-1. The sample vaccine safety report being loaded as input text in the CLEW. 

 
Figure J-2. The ETHER Clinical Feature Extraction and ETHER Temporal selections are chosen for 
processing the text. 
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The second pipeline for the sample vaccine safety report is: 

• BioPortal Annotator (using MedDRA ontology) + ETHER Temporal 

For this pipeline, we load the text into the CLEW prototype in the same way, then we set the 
Workbench to use the BioPortal Annotator with a single ontology, MedDRA. The temporal 
relation process is performed in the same way, using the ETHER tool. These selections are 
shown in Figure J-3. After running this pipeline, a similar set of output XML files with 
annotations and temporal associations is created. 

 

Figure J-3. The BioPortal Annotator using the MedDRA ontology and the ETHER Temporal selections 
are chosen for processing the text. 

By comparing these two outputs, as in Figure J-4, we see that the two approaches have captured 
some of the same information, but that there are also differences in the annotated text. This 
demonstration simply shows the difference in outputs between pipelines and not performance 
evaluation. 
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Figure J-4. A comparison of the extraction and temporal relation output from the two pipelines for the 
sample vaccine safety report. The output XML for the relations is shown for both pipelines, along with 
the full text of the report with highlighted text. The yellow highlighted text indicates features identified by 
clinical NER, and the green highlighted text indicates identified temporal expressions. The red dotted 
lines connect clinical features to temporal expressions, as described in the XML output for each pipeline. 

J.2 Pathology Example 
In the second example, we are identifying clinical information from a portion of the text of the 
sample pathology report provided in Section 4.1. We use only the first few sentences in the 
report because we expect the tools to mark many extra words and phrases throughout the report. 
The tools are not optimized for these reports, and the remaining text is not needed for this 
demonstration purpose. The first pipeline for the pathology report is: 

• BioPortal Annotator (using SNOMED-CT ontology) 

First, we load the text from the pathology report into the CLEW prototype, as shown in Figure J-
4, then we set up the Workbench as shown in Figure J-5 to use the BioPortal Annotator with the 
SNOMED-CT ontology only. The Workbench then runs and produces an output XML file with 
annotated terms from the text. 



 67 

 

 
Figure J-5. The sample pathology report text being loaded as input text in the CLEW prototype. 

 
Figure J-6. The BioPortal Annotator using the SNOMED-CT ontology is chosen for processing the text. 

For the sample pathology report text, the second pipeline is: 

• cTAKES Clinical Feature Extraction 
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We again load the text from the pathology report into the CLEW prototype in the same manner. 
Then we choose the cTAKES tool to process the text, as shown in Figure J-7. When this pipeline 
is run in the Workbench, the cTAKES output showing the annotated output is produced. 

 
Figure J-7. The cTAKES selection is chosen for processing the text. 

The outputs from these two pipelines are not in the same format, but they can still be compared 
to observe similarities and differences. Figure J-8 shows some of the text differences in what has 
been identified by the two different pipelines. Note that the performance of the various tools and 
pipelines has not yet been evaluated. 
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Figure J-8. A comparison of the feature extraction output from the two pipelines for the sample 
pathology report excerpt. The output formats are very different, but the extracted features from the 
reported are represented with highlighted text on the right side of each box. 
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