

Affordable Robotic Intelligence for Elderly Support

Bertram F. Malle

Department of Cognitive, Linguistic, & Psychological Sciences
Humanity-Centered Robotics Initiative
Brown University
Providence, RI

Supported by:

Interdisciplinary Team

Behavioral Science and Design

• Bertram Malle, CLPS Brown; Claudia Rébola, University of Cincinnati

Computer Science and Robotics

Michael Littman, CS Brown, Peter Haas, HCRI Brown

Psychiatry and Clinical Psychology

- Gary Epstein-Lubow, Hebrew Senior Life, Boston, MA
- Michael Armey, Butler Hospital, Providence, RI

Ageless Innovation $(\Leftarrow Hasbro)$

- Andrew Jeas
- Ted Fischer

Aims

Not an intervention to combat dementia.

An intervention to support individuals with the challenges of aging, with or without dementia.

• Not to replace health-care professionals or family members

A technology that helps lighten the burden on family members and the healthcare system.

Affordable assistance with small but challenging tasks of daily living; connecting with friends and family; and relieving agitation and loneliness.

• Not a robot server, therapist, entertainer

But a comforting and understandable robot companion.

ARIES

Starting Point:

Existing Strengths

Comforting, familiar, non-threatening Creating limited expectations Affordable (~\$100)

New Intelligence

Perception, memory, nonverbal communication

- → tracking of lost objects, helping find them
- ightarrow fall detection, medication reminders, social contact reminders, vitals or other behavioral data...

ARIES

Project Components

Use behavioral science methods

To assess older adults' major challenges of daily living with which a small, affordable robotic system can assist.

Apply inclusive design principles and cutting-edge computer science

To alleviate help some of these challenges.

Use a systematic, longitudinal assessment of the developed system

To establish safety, efficacy, and acceptability for older people with or without cognitive impairments.

Challenges Assessment

- In-person standardized interviews
 Independent living facilities; starting in memory care facility
- Online survey with representative samples
- · Small-sample longitudinal study

With care recipients as well as for informal caregivers

ARIES

Preliminary Results (50 healthy adults > 65)

Top 5 Challenges

Difficulties with **technology** (e.g., cell phone, computer, TV remote)

Difficulties with **misplacing** or losing things (e.g., glasses, keys, phone, wallet).

Difficulties moving myself from seated to standing position or getting in/out bed

Difficulties with my **moods**, with keeping a positive outlook

Difficulties with speech and language (e.g., speaking clearly, finding the right words, holding a conversation)

Top 6 Adoption Reasons

Measuring vitals (e.g., heart rate, blood pressure)

Locating lost objects (e.g., keys, reading glasses, wallet)

Detecting falls and calling for help in medical emergencies

Playing cognitive games for cognitive health

Reminders of medication, appointments, exercise, etc.

Connecting with friends and family

Technical Elements

Detailed analysis of existing pet companion

Enhancing sensors, information processing and storage

- \rightarrow Infrared +
- \rightarrow Edge processing (smart phone, hub)

Enhancing movement for communication

• Test possible "vocabularies" (paw, head, sounds...)

Software development

- · Learning objects and locations through encounters
- Respond to inquiry ("where are my glasses?")
- Locate objects
- Guide care recipient to lost object

