Risk Reduction Through Non-Pharmacological Intervention

Laura Baker, PhD

Professor of Internal Medicine, Neurology, & Public Health Sciences Associate Director, Wake Forest Alzheimer's Disease Research Center

1

Disclosures

Funding:

EXERT:

U.S. POINTER: SALZHEIMER'S

EXERT Pls (Project Directors)

Laura Baker, Carl Cotman

NIA U19 PI for ADCS

Howard Feldman

Intervention Oversight Team

Jeff Katula, Liz Chmelo, Heather Hodge, Cara Johnson, Suzi Montasir

YMCA of the USA

Heather Hodge, Valerie Lawson

YMCAs

13 YMCA Project Managers, 45 YMCA Trainers

14 Sites

UW (Okonkwo), Mt. Sinai (Li, Sano), NYU (Sadowski), Emory (Wharton, Nocera), UKY (Caban-Holt, Bardach, Jicha), KU (Burns), Cleveland Clinic (Sabbagh), UNT (O'Bryant, Johnson), Great Lakes Clinical Trials (Ross, Satek), Yale (van Dyck), Stanford (Fairchild, Yesavage), UCI (Tam), Duke (Welsh-Bohmer), Wake Forest (Baker)

ADCS Coordinating Center

<u>Directors</u> Howard Feldman Judy Pa

Associate Directors
Jeff Kaye
Mary Sano
Lon Schneider

Administration

Mahalia Durham Tatiana Herold Nayana Sangani Alexandre Shadyab Donna Tan

Finance Leticia Hu Alia Usman Indra Perez-Hall

Alan Perez

Communications-

Recruitment Andrea LaCroix Dan Bennett Genny Matthews Aladdin Shadyab

Biomarker Robert Rissman James Barlow Peggy Crews

Biostatistics
Ron Thomas
Karen Messer
Shelia Jin
Vahan Aslanyan
Jingjing Zou
Jing Zhang

Clinical Operations

Nisha Johal Annette Allert Bri Askew Archana Balasubramanian Clara Garrison Rosemary Morrison Bryce Truver

Regulatory & QA Roxana Phillips Jan Agee

Jan Agee Terry Ruiz Rick Seghers Pat Chinwattana

Imaging Core Jim Brewer Nichol Ferng Robin Jennings

Special Projects Carolyn Revta Jan Durant

Jan Durant Jody-Lynn Lupo Sara Moukarzel Michelle Herman Anna Lu

Neuropsychology Sarah Banks Diane Jacobs David Salmon

DSMB
Dan Weintraub
Melissa Armstrong
Andrew Feigin
Richard Kryscio
Joe Quinn

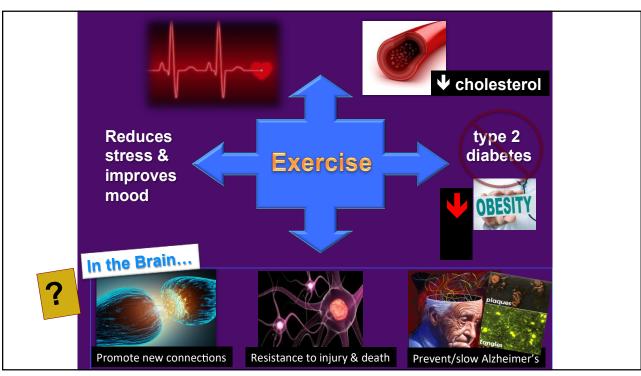
Informatics, IT, Data Management

Chandra Nimbal
Jim Krooskos
Steve Chang
Li Cui

Sean Kipperman Anne McGee Lorena Naylor Tho Nguyen Charlie Torres Zeppelin Vanbarriger Kevin Zielin

Susan Castellino Medical Safety Gabriel Leger Curtis Taylor

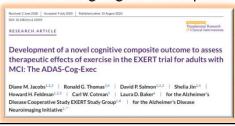
Curtis Taylor Alessandra Pol Monitoring Team


Monitoring Team
Don Guterwill
Michelle Brill
Janet Kastelan
Ike Monye
Rebecca Ryan-Jones
Vicky Zyed
Laura Cole

Funding Partners

Laurie Ryan Kristina McLinden Akanni Clarke

Alz Assoc: Maria Carrillo Heather Snyder


3

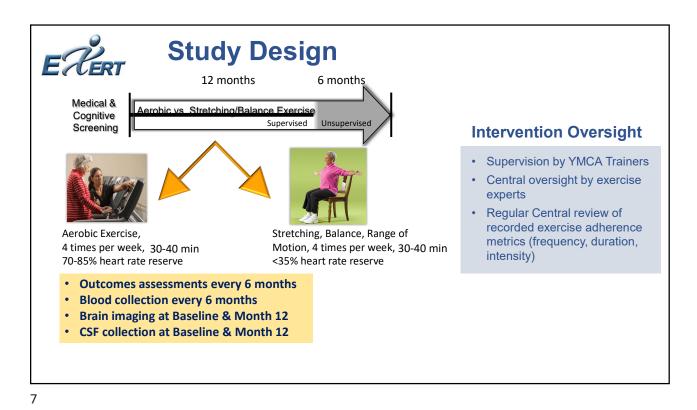
Overview

- Preliminary findings from small or short-duration RCTs that regular physical exercise has potential to slow cognitive decline in adults at increased risk for AD [Lautenschlager 2008, Baker 2010, Nuzum 2020, Biazus-Sehn 2020]
- Phase 3 multi-site randomized clinical trial in 296 older adults with MCI, coordinated through the Alzheimer's Disease Cooperative Study (ADCS) in partnership with Wake Forest University School of Medicine
- Tested the effects of physical exercise on cognitive function using a global composite: ADAS-Cog-Exe

ADAS-Cog-Exec

- ADAS-Cog13 Subtests: Immediate & Delayed Word Recall, Orientation, Number Cancellation
- **Executive Function**: Trails A & B, Digit Symbol, Category Fluency
- CDR Box Scores: Memory, Orientation, Judgement & Problem Solving

5


Aims

Primary

Test whether 12 months of supervised moderate-high intensity aerobic exercise (AX) relative to stretching/balance/range of motion (SBR) can improve or protect cognition measured using ADAS-Cog-Exec in adults with amnestic MCI.

Secondary & Exploratory

- · Test intervention effects on:
 - o * Executive function and episodic memory composite scores
 - o * CDR-SB
 - o MRI and ASL brain imaging (hippocampal, prefrontal, AD signature regions)
 - AD blood biomarker (ab42/ab40)
- * Examine intervention effects relative to usual care (no intervention) with modeling using ADNI

Populations of Interest

Primary: Modified Intent-to-Treat (mITT)

Includes all eligible participants who:

- began the exercise intervention
- completed at least 1 post-baseline primary outcome assessment

Others ...

- Pre-Pandemic (mITT participants exiting study before pandemic)
- **Per-Protocol** (mITT participants meeting rigorous adherence metrics: attended 70% supervised sessions, mean session duration of 40 min)

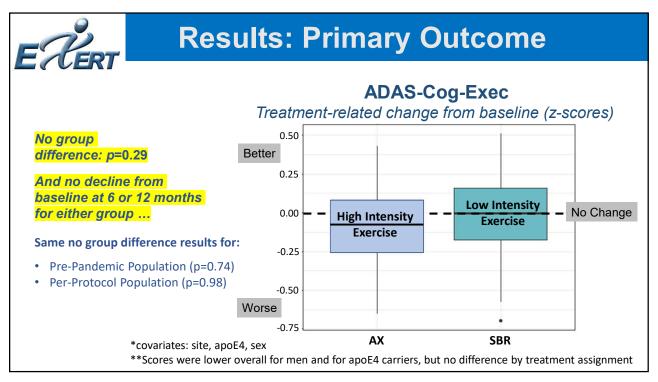
Analysis Plan

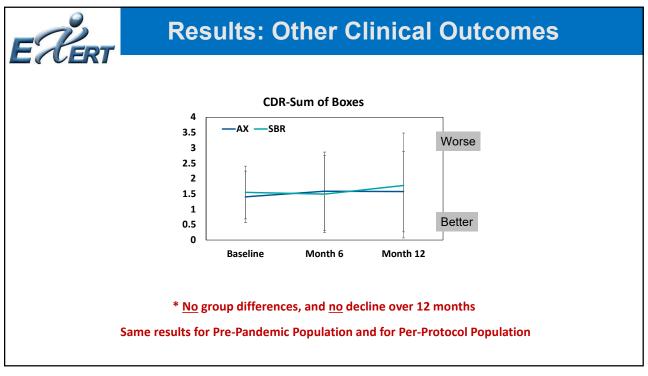
• **Cognition**: tested differences in ADAS-Cog-Exec change scores from baseline to mean of Months 6 & 12, across intervention groups (α =0.05)

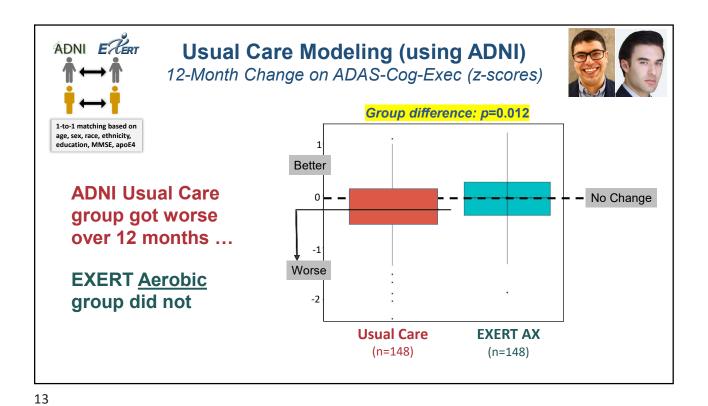
• **Usual Care**: compared 12-month changes for each EXERT intervention group relative to matched 'usual care' participants (using ADNI) based on age, sex, ethnicity, education, MMSE, apoE4 (using propensity matching)

1-to-1 matching based on age, sex, race, ethnicity, education, MMSE, apoE4

9


Amnestic MCI Participants (n=296)


Baseline Characteristics


Mean (SD) MMSE: 27.9 (1.9)Mean (SD) CDR-SB: 1.5 (0.8)

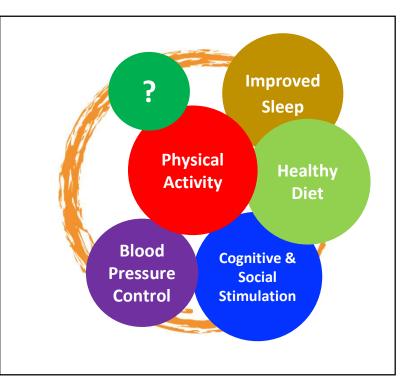
• ApoE4 carrier: 25%

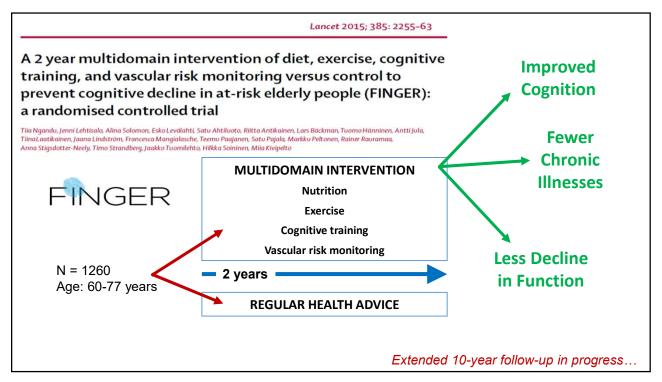
Demographics (n=296)	AX	SBR	
Sex (n, % Female)	85 (57.4%)	84 (57.0%)	
Race (n, %)			
White	127 (86.4%)	129 (87.2%)	
African American	15 (10.2%)	14 (9.5%)	
Asian	3 (2.0%)	4 (2.7%)	
Native American/Alaskan Native	2 (1.4%)	1 (0.7%)	
Ethnicity (n, %)			
Hispanic	3 (2.0%)	0 (0%)	
Non-Hispanic	142 (96.0%)	145 (98.0%)	
Unknown	3 (2.0%)	3 (2.0%)	
Age, years (M, SD)	74.3 (5.7)	74.7 (6.2)	
Education, years (M, SD)	16.2 (2.4)	16.3 (2.4)	

ADNI EXERT **Usual Care Modeling (using ADNI)** 12-Month Change on ADAS-Cog-Exec (z-scores) Group difference: p=0.0005 1-to-1 matching based on age, sex, race, ethnicity, education, MMSE, apoE4 Better **ADNI Usual Care** No Change 0 group got worse over 12 months ... Worse **EXERT Stretching**, -2 Balance, Range of Motion group did not **Usual Care EXERT SBR** (n=148)(n=148)

Summary

- Primary hypothesis was not supported: no group differences in cognitive response to exercise.
- However, cognitive function in adults with aMCI <u>did not decline</u> over 12 months for either exercise group. This differed from the modeled trajectory for matched ADNI 'usual care' cohorts showing 12-month declines on our primary outcome.




- Findings suggest that any regular supported exercise of at least 120-150 minutes per week for 12 months may increase resistance or resilience to cognitive decline for MCI.
- Trial was conducted during a pandemic → has implications for durability of intervention with potential resistance to cognitive decline despite other significant life challenges that adults with MCI will face now and in the future.


15

Combination Therapy ??

- May increase overall 'DOSE' of lifestyle 'medicine'
- Allows for personalized <u>TAILORING</u> of the lifestyle program for cultural practices, physical limitations and logistical challenges

Who?

2000 cognitive normal older adults (60-79 years) at increased risk for cognitive decline due to:

- ✓ Sedentary lifestyle
- ✓ An unhealthy diet (based on a brief diet screener)
- √ Suboptimum cardiovascular health
- √ Family history of memory problems
- ✓ Race and ethnicity: Black/African American, Native American, Hispanic

Intervention Groups

Cognitive Exercise⁴

Medical Monitoring

What?

Goal: Test the effects of two lifestyle interventions on cognitive function over 2 years.

SELF-GUIDED GROUP

- Participants design their own lifestyle intervention program
- Receive education on healthy lifestyles and brain health
- Annual health monitoring

STRUCTURED GROUP

- Participants provided with a structured lifestyle intervention program to follow
- Receive education on healthy lifestyles and brain health
- · More frequent health monitoring

19

Self-Guided Group | Self-

XX OO Y C X X

XX 00

QU.S.POINTER alzheimer's **Q** association

xxx

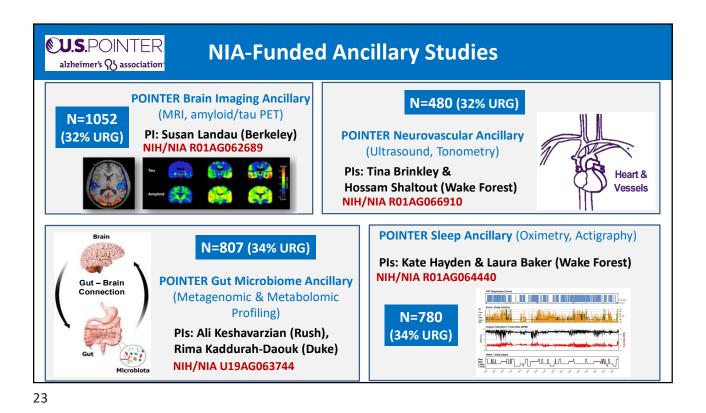
XOYC

X

×

x x x x x o

×


COGNITION

Outcomes	Cognitive Domain	Tests		
	Memory	Free and Cued Selective Reminding Test (FCSRT)		
		Immediate and Delayed Story Recall (SR)		
		Immediate and Delayed Visual Paired Associates (VPA)		
		Number Span Forward, Backward, Sequencing		
Primary Composite (PmNTB)	Executive Function & Processing Speed	Word Fluency by Letter (F, A, S)		
		Word Fluency by Category (Animals, Vegetables, Fruits)		
		Digit Symbol Substitution (DSST)		
		Trail-Making Test, Condition A (Trails A)		
		Trail-Making Test, Condition B (Trails B)		
	Global	Mini-Mental Status Exam (MMSE)		
	Memory	Cogstate One-Card Learning (OCL)		
		Cogstate Face Name Associative Memory Exam (FNAME)		
		Cogstate Behavioral Pattern Separation of Objects (BPSO)		
Secondary /		Cogstate Detection (DET) and Identification (IDN)		
Experimental	Executive Function	Cogstate One Back (OBK)		
	& Processing Speed	Digital Cognition Technologies Clock Drawing (DCTClock)		
		BrainHQ Assessment		

21

OUTCOMES Allows for head-to-head comparisons 1. POINTER Primary Cognitive Outcome 2. APOE genotype, banked DNA, plasma FINGER 3. Adjudicated cognitive status (MCI, AD/ADRD) 4. Extensive health phenotyping (cardiovascular, metabolic) large pharma studies 5. Self-report: subjective concerns, mood, sleep, QOL, health care utilization (A4, AHEAD) 6. Data sharing and harmonization with other trials, including **WW-FINGERS** Other non-pharm studies (EXERT) 7. Ancillary studies (Imaging, Vascular, Microbiome, Sleep)

QU.S.POINTER alzheimer's **Q** association

Baseline Characteristic			Northern				
At-Risk Cohort	Overall (N=2111)	North Carolina (N=404)	California (N=413)	Chicagoland (N=463)	Houston (N=455)	Rhode Island (N=376)	p-valu
Age [in years]	68.2 +/- 5.2	67.8 +/- 5.0	67.5 +/- 5.2	68.5 +/- 5.0	68.5 +/- 5.2	68.4 +/- 5.3	0.41
Age: >= 75 years	274 (13.0%)	47 (11.6%)	46 (11.1%)	59 (12.7%)	67 (14.7%)	55 (14.6%)	<0.00
Age: >= 70 years	903 (42.8%)	159 (39.4%)	151 (36.6%)	220 (47.5%)	201 (44.2%)	172 (45.7%)	0.001
Female %	1453 (68.8%)	308 (76.2%)	277 (67.1%)	315 (68.0%)	299 (65.7%)	254 (67.6%)	0.009
Race/Ethnicity: Participants of Color	647 (30.8%)	117 (29.1%)	124 (30.2%)	145 (31.5%)	206 (45.4%)	55 (14.7%)	<0.00
Education: Not a College Graduate	633 (30.0%)	148 (36.6%)	125 (30.3%)	111 (24.0%)	146 (32.1%)	103 (27.4%)	
Area Deprivation Index - National	36.1 +/- 23.1	56.0 +/- 22.0	20.8 +/- 14.9	33.2 +/- 20.6	39.3 +/- 24.3	31.5 +/- 16.5	<0.00
Systolic Blood Pressure (mmHg)	131.1 +/- 15.9	132.0 +/- 16.5	128.4 +/- 14.0	130.4 +/- 15.7	135.0 +/- 16.0	129.2 +/- 16.6	0.56
Diastolic Blood Pressure (mmHg)	76.7 +/- 9.4	76.0 +/- 9.9	77.5 +/- 9.9	76.2 +/- 9.1	80.1 +/- 7.5	73.1 +/- 9.3	0.11
HBA1C%	5.9 +/- 0.7	5.9 +/- 0.8	5.9 +/- 0.7	5.8 +/- 0.7	6.0 +/- 0.7	5.9 +/- 0.6	0.22
Total Cholesterol mg/dL	193.7 +/- 42.5	200.5 +/- 41.7	201.1 +/- 42.8	189.0 +/- 41.2	189.5 +/- 41.6	189.0 +/- 43.8	<0.00

Intervention Adherence: Meeting Goal

Team Meeting attendance (goal=80%): >90%

- Participants design their own lifestyle intervention program
- Receive education on healthy lifestyles and brain health
- · Annual health monitoring

- Participants provided with a structured lifestyle intervention program to follow
- Receive education on healthy lifestyles and brain health
- More frequent health monitoring

Team Meeting attendance (goal=80%): 92%
Participants logging data (goal=80%): 86%
Median aerobic exercise min/week (goal=120): 137 min
Median Fitbit very active min/week (goal=90): 90 min

• Mean MIND diet score (goal=9.5): 10.6

Retention

Active for assessments: 97%Active in intervention 83%

25

U.S. POINTER DATA: Results expected Summer 2025

- 1. Multiple traditional and experimental cognitive outcomes
- 2. APOE genotype and blood AD biomarkers (Robert Rissman, ATRI/USC)
- 3. Stored DNA and plasma for future investigations
- 4. Adjudicated cognitive status (MCI, AD/ADRD)
- 5. Extensive health phenotyping (cardiovascular, metabolic)
- 6. Multiple measures of subjective experience (memory, mood, sleep, QOL)
- 7. Extensive ancillary study data:
 - Brain amyloid/tau PET, volumetric and ASL MRI
 - · Peripheral- and neuro-vascular metrics
 - Gut microbiome, metagenomic, metabolomic data
 - Sleep apnea, sleep fragmentation and other objective measures of sleep quality

ALZHEIMER'S' ASSOCIATION

U.S. POINTER (parent trial)

- U.S. POINTER Brain Imaging
- U.S. POINTER Sleep
- U.S. POINTER Neurovascular
- U.S. POINTER Microbiome

Leadership (*plus many others who make this work possible)

Wake Forest School of Medicine

Laura Baker, PhD Mark Espeland, PhD **Nancy Woolard** Jeff Katula, PhD Sam Lockhart, PhD Kate Hayden, PhD Hossam Shaltout, PhD Tina Brinkley, PhD Jo Cleveland, MD Jeff Williamson, MD

Baylor College of Medicine & Kelsey Research Foundation

Valory Pavlik, PhD Melissa Yu, MD **Ashley Alexander**

Brigham & Women's Hospital

Kate Papp, PhD

UC Berkeley

Susan Landau, PhD

Duke University

Rima Kaddurah-Daouk, PhD

USC / ATRI

Rema Ramen, PhD Robert Rissman, PhD

Alzheimer's Association

Maria Carrillo, PhD Heather Snyder, PhD Katherine Lambert Claire Day Terrianne Reynolds, Olivia Montego Richard Elbein, Ann Marie McDonald Susan Antkowiak

Karolinska Institutet & National Institute for Health & Welfare

Miia Kivipelto, MD PhD

Rush Medical Center & Advocate Health Care

Martha Clare Morris, ScD Christy Tangney, PhD Darren Gitelman, MD Jennifer Ventrelle, MS Sarah Graef, MS

U of California - Davis

Rachel Whitmer, PhD Sarah Farias, PhD

Brown/Butler & Miriam Hospitals

Stephen Salloway, MD Rena Wing, PhD

27

SUMMARY:

Risk Reduction Through Non-Pharmacological Intervention

- Regular physical exercise may slow cognitive decline in adults at risk for dementia
- U.S. POINTER a large, diverse, and representative rigorous trial will provide new multi-domain data to inform future implementation of non-pharm strategies to prevent cognitive decline and dementia in at-risk older adults