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I. Introduction 
Medicaid provides health insurance coverage and services and supports for people with disabilities, as 
well as groups of children and adults based on financial eligibility. While researchers have an 
understanding about some of the people with disabilities enrolled in Medicaid, such as those who qualify 
for Medicaid on the basis of a disability, less is known about those persons who might be disabled but 
may not have indicators in administrative data that allow for easy identification, such as the eligibility 
pathway indicators. Such identification is increasingly important, as states implement provisions in the 
One Big Beautiful Bill Act of 2025 (OBBA,Pub. L. 119-21) including Medicaid work requirements. More 
broadly, states and researchers would like to utilize more readily available administrative data sources for 
budgeting and planning.  

Researchers have developed algorithms to identify people with disabilities in the Medicare population, 
but much less work has been done to develop algorithms to identify people with disabilities in the 
Medicaid population. The objective of this project was to develop a model that incorporates multiple 
claims-based indicators to identify Medicaid beneficiaries who have a disability using data from the 
Medicaid Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF). To meet this 
objective, we first conducted a targeted environmental scan of existing algorithms to identify disabilities 
in claims; summarized results for the team within the Office of Behavioral Health, Disability, and Aging 
Policy (BHDAP); and worked with BHDAP to select relevant predictor and service use indicators. Next, we 
identified beneficiaries with a known disability (defined below) indicated in the TAF. We then fit a model 
to capture how various claims-based indicators were associated with people with a known disability, and 
used the model to identify people who had many of these indicators in their claims history but were 
otherwise not known to be disabled. This report summarizes the findings from our analysis to address the 
following research questions: 

1. How well do claims-based algorithms identify disabled populations in TAF claims data?  

2. What is the prevalence of people identified with a disability using various methods of identification in 
claims data?1 

3. What are the characteristics of people with known disabilities? How do these characteristics compare 
to those of people who do not have a known disability, but (a) have a suspected disability based on 
claims data, and (b) do not have a suspected disability based on claims data?  

 

1 Based on discussions with BHDAP, the definition of disability was expanded beyond those in a disability pathway to 
also include those receiving Supplemental Security Income (SSI) or Social Security Disability Insurance (SSDI) or using 
personal care services. 



Chapter I Introduction  

Mathematica® Inc. 2 

Study highlights 
• The models for adults and children showed strong predictive performance based on area under the receiver 

operating characteristic curve (AUROC) statistics well above 0.8. 

• The potential predictors included a broad list of demographic, diagnostic, and utilization indicators, and many 
of these different types of predictors were selected in the models. Some of the most important predictors 
included demographic characteristics that are straightforward to identify from TAF. The diagnostic indicators 
that were most predictive for both groups included those related to learning disabilities, autism spectrum 
disorder, and psychiatric conditions. 

• Although the AUROC showed strong predictive performance, known disability among the child and adult 
populations in Medicaid is still a relatively rare outcome and resulted in low model sensitivity. This finding 
underscores the difficulty in capturing concepts such as functional limitations from claims-based indicators. 

• Future research can further explore relevant thresholds for defining disability, identify an external data source 
that would allow validation for the people with a known disability, and examine the utilization and cost patterns 
of people with and without known disability based on the predicted probability of having a disability.  
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II. Approach 
A. Overview 

Our procedure for identifying Medicaid beneficiaries with disability in TAF consisted of 3 primary steps: 

1. First, we defined a subset of beneficiaries with known disability, based on observable data. For this 
analysis, anyone who was eligible for Medicaid based on disability, received Supplemental Security 
Income (SSI) or Social Security Disability Insurance (SSDI) benefits, or received personal care home 
and community-based services (HCBS) during our study period is considered to have a known 
disability. 

2. Next, we fit a predictive model to the outcome of known disability, based on demographic 
characteristics and claims-based indicators. 

3. Last, we predicted the outcome (known disability) for all individuals, based on their predictor values. 
Beneficiaries who do not have a known disability but have a high predicted probability of having one 
are classified as having a suspected disability. 

It is important to note that our predictive model does not provide the probability of having a true 
disability, which is the outcome that we are most interested in, because this outcome is unknowable 
based on claims data. Rather, we are using the model as a tool to identify predictors that are associated 
with having a known disability, as well as the strength of this association. We then make the assumption 
that beneficiaries with a true (but unknown) disability will resemble those with a known disability, in terms 
of their predictors. This assumption implies that beneficiaries with higher predicted probabilities of having 
a known disability are more likely to have a true disability than those with lower predicted probabilities. 

We also note that the use of a predictive model does not imply that we are attempting to predict which 
beneficiaries will become disabled in the future. The goal is to predict (estimate) which beneficiaries have 
a disability concurrently with the study period. Therefore, we used one annual cross-section of data for 
our study. Specifically, we used 2019 TAF data to define relevant indicators, including predictors and 
outcomes of interest for descriptive output, and to develop the prediction model. We included 2018 TAF 
for condition categories that required a lookback period of more than 12 months to define (described in 
more detail later in this report). Ultimately, this approach could be used in other studies to conduct 
analyses among people with a disability or to stratify analyses based on disability status. 

B. Study population 

The study population consisted of 2019 Medicaid enrollees. We excluded from the population any 
enrollees who were dually eligible for Medicaid and Medicare, as we did not have access to Medicare 
claims and therefore would have missed important information about these enrollees’ conditions and 
service use. A small number of Medicaid enrollees aged 65 and older were not dually eligible; we excluded 
this group as well to avoid small sample issues. 

We also restricted the sample to enrollees with full-scope benefits given BHDAP’s focus on considering 
disability in relation to people who need support services and may require Medicaid HCBS. Last, we 
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imposed a restriction for 12 months of continuous enrollment in 2019 to have complete measures for 
conditions and other variables that informed the prediction model and interpretation. 

The final sample consisted of 52,668,685 Medicaid enrollees, 30,276,091 (57 percent) of whom were 
children aged 18 or younger. 

C. Environmental scan 

To inform the selection of potential predictors for the analysis and the modeling approach for our 
analysis, we reviewed literature from 2015 to 2025 that focused on claims-based algorithms to predict 
disability or frailty.2 Appendix A includes a brief summary of results from our scan. With input from 
BHDAP, we selected the set of predictors from algorithms identified in the scan that could most feasibly 
be constructed within the time frame of our analysis (described below). We also determined that we 
should develop separate models for children and adults due to their distinct characteristics and different 
sets of algorithms that were validated and tested for these populations in work identified through the 
environmental scan. 

D. Outcome and predictor definitions 

We defined Medicaid beneficiaries as having a known disability if they met one of the following four 
criteria: (1) were eligible for Medicaid on the basis of disability, (2) received SSI benefits based on the SSI 
flag in the TAF Annual Demographic and Eligibility File (DE),3 (3) received SSDI benefits based on the SSDI 
flag in the TAF DE file, or (4) received HCBS for personal care in 2019.  

Based on the environmental scan, we selected a comprehensive set of demographic, geographic, clinical, 
and utilization-based indicators as potential predictors of disability (Table 1). We integrated multiple 
frameworks to capture a range of characteristics, diagnoses, and conditions that may be associated with 
disability prevalence. The predictors varied for the children’s and adult’s models based on what was 
identified in the environmental scan for each population. 

To characterize the sample, we defined key demographic attributes for each person, including age, sex, 
race and ethnicity, and urban versus rural residence. We also captured geographic variation by including 
the state of residence, whether the state had adopted Medicaid expansion, and whether the beneficiary 
lived in an urban or rural area. 

 

2 We searched PubMed for relevant research. We prioritized articles that described and/or conducted comparative 
analysis of multiple indices. We then conducted a targeted snowball search from the citations of the most relevant 
articles to identify additional indicators of interest. We excluded studies that were redundant with studies already 
identified for extraction, studies that focused on narrow disease-specific algorithms, non-claims-based studies, 
descriptive studies that were not focused on predicting disability, and international studies (except for those captured 
in one included systematic review). 
3 Beneficiaries in an SSI-specific eligibility category are already captured among those who are Medicaid-eligible on 
the basis of disability, so this separate criteria for the outcome definition captures anybody with an SSI flag in the TAF 
DE who is not otherwise captured based on their Medicaid eligibility pathway. 
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We captured service utilization by including indicators of any inpatient stays and 30-day hospital 
readmissions in the past year, and use of HCBS using the full HCBS taxonomy.4 Note that we did not 
include HCBS for personal care use as a predictor, as we used this indicator in our outcome definition. We 
also included indicators of durable medical equipment (DME) and supplies. These included indicators for 
ambulance use, walking aids and wheelchairs, hospital beds, and home oxygen.5 Including DME utilization 
enabled us to capture evidence of functional support needed that might be missing from a diagnosis-
based algorithm due to coding variation or general missingness in data. 

Table 1. Categories of predictors included in each model 

Predictor category 
Number of predictors 
included adult model 

Number of predictors 
included in child model 

Demographic 6 7 
Inpatient stays and readmissions 2 2 
Use of HCBSa 16 16 
DME 10 10 
Chronic conditions indicators:   

CCW 50 50 
CDPS 86 86 
CCCb 0 18 
CWDAb 0 5 
PMCAb 0 36 

Total 170 230 
a Use of HCBS is defined based on the HCBS taxonomy that relies on claims to identify HCBS use. We did not use indicators of HCBS 
program enrollment separately for the TAF DE file to identify HCBS use. We also did not include use of personal care HCBS as a 
predictor, because it is part of the definition of known disability. 
b The CCC algorithm, CWDA, and PMCA are defined for children only. 
CCC = Complex Chronic Conditions; CCW = Chronic Conditions Data Warehouse; CDPS = Chronic Illness and Disability Payment 
System; CWDA = Children with Disabilities Algorithm; DE = Annual Demographic and Eligibility File; DME = durable medical 
equipment; HCBS = home- and community-based services; PMCA = Pediatric Medical Complexity Algorithm; TAF = T-MSIS Analytic 
File; T-MSIS = Transformed Medicaid Statistical Information System. 

Finally, we included indicators from several chronic condition and diagnostic classification systems. Two of 
these systems are designed for the entire population: (1) the Chronic Conditions Data Warehouse (CCW) 
categories and (2) the Chronic Illness and Disability Payment System (CDPS).6 The CCW categories 
incorporate chronic health, mental health, substance abuse, and potentially disabling conditions. Many 
disabilities stem from chronic conditions, and CCW categorization is used widely because it encompasses 
an array of condition types. Using CDPS helped us cast a wider net to capture any conditions missed by 

 

4 For more information on the HCBS taxonomy, see Identifying and Classifying Medicaid Home and Community-
Based Services Claims in the Transformed Medicaid Statistical Information System, 2016-2020 Issue Brief.  
5 We adapted existing code from the Claims-Based Frailty Index in Kim et al. (2020) to include relevant predictors 
related to DME and supplies.  
6 The CDPS uses International Classification of Disease codes to assign CDPS categories that indicate illness burden 
related to major body systems (for example, cardiovascular) or types of chronic disease (for example, diabetes). Within 
each major category is a hierarchy reflecting the clinical severity of the condition and its expected effect on future 
costs. Each hierarchical CDPS category is assigned a CDPS weight. CDPS weights are additive across major categories. 

https://aspe.hhs.gov/sites/default/files/documents/5ddae662bdcd7b04379e6f176a283441/identify-classify-hcbs-claims-tmsis-brief.pdf
https://aspe.hhs.gov/sites/default/files/documents/5ddae662bdcd7b04379e6f176a283441/identify-classify-hcbs-claims-tmsis-brief.pdf
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HM8DOI
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the CCW categorization for the overall population. For more nuanced information for the pediatric 
population, we included three additional condition algorithms designed for children up to age 18: (1) the 
Complex Chronic Conditions (CCC) algorithm,7 (2) the Pediatric Medical Complexity Algorithm (PMCA),8 
and (3) the Children with Disabilities Algorithm (CWDA).9  

E. Predictive model 

To identify how predictors were associated with known disability, we fit a logistic regression model with a 
Least Absolute Shrinkage and Selection Operator (LASSO) penalty. Logistic regression is the most 
common and well-understood regression approach for modeling binary outcomes (such as known 
disability), while the LASSO penalty is a long-established machine-learning approach for handling 
situations when the model includes a very large number of predictor variables, many of which are 
potentially correlated. The LASSO penalty builds in an automatic variable selection procedure, effectively 
dropping variables from the model that are not independently important for classifying individuals into 
groups based on known disability versus no known disability. Including too many predictors runs the risk 
of overfitting the model, which is detrimental to prediction. LASSO logistic models are relatively 
straightforward to implement and interpret compared with other, more complex machine-learning 
techniques. 

We fit separate models for adults and children, which has two advantages. From a conceptual perspective, 
individual predictors are likely to have different associations with disability among adults compared with 
children, and fitting separate models implicitly enables us to estimate these effects separately. From a 
practical perspective, we have a longer list of predictors for children compared with adults (due to the 

 

7 The CCC Classification System (CCC-CS) was developed to identify complex medical conditions within the pediatric 
population that can be reasonably expected to last at least 12 months and involve either several organ systems or one 
organ system severely enough to require pediatric care and hospitalization. CCC-CS body systems include 
cardiovascular, hematologic, malignancy, metabolic, neonatal, neuromuscular, renal, respiratory, transplant, and 
technology dependence domains. We adapted programming code available at 
https://www.childrenshospitals.org/content/analytics/toolkit/complex-chronic-conditions.  
8 The PMCA identifies significant chronic conditions in two or more body systems expected to last at least a year and 
require healthcare resources and treatment to control, or one progressive condition associated with deteriorating 
health and decreased life expectancy, or continuous dependence on technology for at least six months, or progressive 
or metastatic malignancy impacting life function. The PMCA stratifies children into three groups: (1) CCC, (2) 
noncomplex chronic conditions, and (3) no chronic conditions. PMCA domains include cardiac, craniofacial, 
dermatological, endocrinological, gastrointestinal, genetic, genitourinary, hematological, immunological, malignancy, 
metabolic, musculoskeletal, neurological, ophthalmological, otologic, otolaryngological, progressive, pulmonary-
respiratory, renal, and mental health. We adapted programming code available at 
https://kpwashingtonresearch.org/index.php/our-research/our-scientists/Mangione-Smith-Rita/measurement-tools-
research-dr-rita-mangione-smith.  
9 The original CWDA included 669 International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-
CM) codes classified as having a ≥75 percent likelihood of indicating a child with a disability. Based on the extracted 
studies from our scan, Chien et al. (2024) updated the CWDA to crosswalk to ICD-10-CM codes and to classify the 
associated impairment type (physical, sensory, developmental, psychiatric, intellectual) and number of associated 
impairment types to include in classification, which adds additional dimensions to the algorithm beyond just the 
individual condition codes.  

https://www.childrenshospitals.org/content/analytics/toolkit/complex-chronic-conditions
https://kpwashingtonresearch.org/index.php/our-research/our-scientists/Mangione-Smith-Rita/measurement-tools-research-dr-rita-mangione-smith
https://kpwashingtonresearch.org/index.php/our-research/our-scientists/Mangione-Smith-Rita/measurement-tools-research-dr-rita-mangione-smith
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inclusion of the CCC, CWDA, and PMCA instruments), and separating the modeling between adults and 
children allows us to incorporate different sets of predictors more easily. 

Modeling approach. We fit and tuned models using standard best practices in machine learning. Due to 
the very large sample sizes (30.3 million child beneficiaries and 11.2 million adult beneficiaries), fitting the 
models to the full data required an excessive amount of computational power. To reduce the 
computational demands of the models and speed up the model-fitting process, we randomly selected a 
“training set” for each model: a 25 percent sample for the child model, and a 50 percent sample for the 
adult model. A larger portion was chosen for the adult model because there is a smaller total sample size 
of adults, so a 50 percent sample was still computationally feasible, while a smaller, 25 percent sample was 
required for computational feasibility for the larger child model. 

Within each training set, we further split the data using a 70/30 ratio, allocating 70 percent of the data to 
a “tuning” set, and 30 percent of the data to a “validation” set. The tuning set was used to fit the model, 
and the validation set was used to assess its performance under various tuning parameters. This tuning 
process adjusted the strength of the LASSO penalty, effectively determining the final number of 
parameters that were selected into the final model. Though we originally intended to use cross-validation 
to select model parameters, we did not do so in order to reduce the computational complexity. 
Additionally, cross-validation is most beneficial when the total sample is small, which is not the case in this 
analysis. For these large data sets, a single 70/30 split is sufficient for model tuning. 

Model testing. After fitting the models, we assessed their performance using standard machine learning 
validation approaches. Our primary metrics were the following: 

• Area under the receiver operating characteristic curve (AUROC): The AUROC measures how well the 
model distinguishes between beneficiaries with known disability and those without known disability, 
based on their predictors. This metric is independent of the threshold chosen for classifying 
beneficiaries as having a high likelihood of disability and is often used as a measure of the overall 
predictive ability of a model. More specifically, an AUROC of 0.7, for example, means that 70% of the 
time, a randomly selected beneficiary with a known disability has a higher predicted probability than a 
randomly selected beneficiary without a known disability. 

• Sensitivity: The sensitivity is the proportion of beneficiaries with a known disability who have a model-
based predicted probability above a given threshold. 

• Specificity: The specificity is the proportion of beneficiaries without a known disability who have a 
model-based predicted probability below a given threshold. 

We calculated the AUROC using the validation set to serve as a measure of overall model predictive 
ability. Using the validation set ensured a valid assessment of the model, because assessing model 
performance on the same data used to fit the model typically leads to overestimation. However, for 
reasons of interpretability, we calculated sensitivity and specificity using the entire set of child and adult 
beneficiaries. For example, using the entire sample implies that the proportion of beneficiaries with 
suspected disability, among those with no known disability, is 100 percent minus the specificity (in other 
words, a specificity of 99 percent implies that 1 percent of beneficiaries without a known disability have a 
suspected disability). 
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State adjustment. State-specific regulations, including differences in rules regarding Medicaid eligibility 
through disability pathways, SSI or SSDI receipt, and allowance for personal care HCBS, will have an 
impact on whether a person is predicted to have a known disability. Because we wanted beneficiaries’ 
utilization and clinical history to drive our predicted probabilities, not their place of residence, we 
controlled for state by marginalizing the predictions over the state variable10. More specifically, for all 
Medicaid beneficiaries, we produced a separate predicted probability for the beneficiary under the 
assumption that the beneficiary lived in each state. We then took a weighted average of the state-specific 
predictions for each beneficiary, weighting by the proportion of all Medicaid beneficiaries who reside in 
the state. This procedure ensures that two beneficiaries with the same demographic and clinical history, 
who differ only by their place of residence, will receive the same predicted probability of having a 
disability. 

 

10 For the purposes of this analysis, we consider the “state” to be a place of residence with 53 levels: the 50 United 
States, as well as Washington, DC; Puerto Rico; and the Virgin Islands. We use the term “state” throughout this report. 
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III. Results 
Model performance. Table 2 summarizes the performance of the two models, both before and after 
state adjustment. Both models show strong ability to distinguish between known disability and no known 
disability, as evidenced by AUROC statistics well above 0.8; these statistics are further reflected in the plots 
of ROC curves (Figure 1). After state adjustment, a randomly selected child with a known disability has an 
88 percent chance of having a higher predicted probability than a randomly selected child with no known 
disability; this probability is 83 percent among adults. 

Table 2. Summary of model performance, both before and after state adjustment 

Sample N 
Training set size 

(%) Adjustment AUROC 
Sensitivity (80% 

threshold) 
Specificity (80% 

threshold) 
Children 
(0–18) 

30,276,091 7,569,023 (25%) Unadjusted 0.900 13.4% 99.9% 

Children 
(0–18) 

30,276,091 7,569,023 (25%) State-Adjusted 0.877 11.8% 99.9% 

Adults 
(19–64) 

22,392,594 11,196,297 (50%) Unadjusted 0.874 18.7% 99.7% 

Adults 
(19–64) 

22,392,594 11,196,297 (50%) State-Adjusted 0.833 13.5% 99.7% 

Figure 1. ROC curves for child (left) and adult (right) models, after state adjustment 

  

Using an 80 percent threshold on the predictive probabilities results in a very high specificity, but a low 
sensitivity. More specifically, only 12 percent of children and 14 percent of adults with known disabilities 
have predicted probabilities above this 80 percent threshold. Density plots of the predicted probabilities 
(Figure 2) illustrate that most of the predicted probabilities are quite low, even for the group with known 
disability: 76 percent of children and 68 percent of adults with known disability have predicted 
probabilities below 50 percent. While low predicted probabilities are typically a feature of models where 
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the outcome has low prevalence (just 5.6 percent of the child and 16.2 percent of the adult Medicaid 
population has a known disability), these results imply that there are many beneficiaries with no known 
disability that have similar predictor profiles as beneficiaries with a known disability. There are two 
potential explanations for this implication. If we assume that known disability is a good surrogate for true 
disability, these findings would imply that claims-based predictors are insufficient for determining true 
disability; other aspects of the beneficiary’s health (such as those that can be assessed by a clinician in a 
face-to-face setting) are needed. On the other hand, these results could also occur if there is a relatively 
large group of beneficiaries who have a true disability that is not known. The truth is likely a combination 
of these two phenomena. 

Figure 2. Density plots of predicted probabilities by known disability status, for children (top) 
and adults (bottom) 
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Choice of threshold. The low sensitivity numbers in Table 2 suggest that an 80 percent threshold for the 
predicted probabilities may be too restrictive for defining suspected disability; lowering that threshold 
would increase sensitivity, at the expense of having a lower specificity. This threshold ultimately 
determines the number of beneficiaries who would be labeled as having a suspected disability based on 
this methodology. A higher threshold results in a small group labeled as having a suspected disability, 
while a lower threshold would result in a relatively large suspected disability group. Because we do not 
know the true disability status of any of the people in the group without known disability, there is no 
statistical method to select the optimal threshold. However, we can calibrate the choice of threshold 
based on the resulting sensitivity. 

Table 3 illustrates how sensitivity and specificity are affected by the choice of threshold. As expected, 
lowering the threshold increases sensitivity while lowering specificity. A threshold of 50 percent still results 
in a sensitivity of 23.9 percent for the child model and 33.0 percent for the adult model, and to achieve 50 
percent sensitivity, the threshold would have to be less than 20 percent for children and 30 to 40 percent 
for adults. 

Important predictors of disability. Appendix Tables B.1 and B.2 list the selected model predictors for 
children and adults, respectively, and rank them in terms of variable importance. Variable importance is 
measured by the Wald Chi-Squared statistic associated with each predictor, based on a standard logistic 
regression that only includes the selected predictors. We found that for both children and adults, 
demographic characteristics, including stage of residence, age, race and ethnicity, and sex, are important 
predictors. Among children, condition groups representing autism spectrum disorders, learning 
disabilities, and psychiatric conditions were among the most important diagnostic types predicting 
disability. Similar conditions groups, such as those for psychiatric conditions and intellectual disabilities 
and related conditions, were among the most important diagnostic types predicting disability for adults 
ages 19–64. Several individual categories of HCBS use were selected in both models. A few indicators of 
DME and the inpatient stay indicator were selected in the adult model, but only one DME indicator was 
selected in the child model indicating the only select types of service use are predictive of disability 
among the Medicaid population. 

Table 3. Sensitivity and specificity for various choices of the probability threshold 
Probability 
threshold 

Child model 
sensitivity 

Child model 
specificity 

Adult model 
sensitivity 

Adult model 
specificity 

10% 60.4% 93.5% 88.7% 52.5% 
20% 43.7% 97.9% 68.6% 82.3% 
30% 35.1% 98.8% 53.3% 92.1% 
40% 29.2% 99.2% 41.7% 96.0% 
50% 24.4% 99.5% 32.2% 97.8% 
60% 20.0% 99.7% 24.9% 98.8% 
70% 15.9% 99.8% 18.8% 99.4% 
80% 11.8% 99.9% 13.5% 99.7% 
90% 7.3% 100.0% 8.5% 99.9% 
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Beneficiary characteristics, by known and predicted disability status. Tables 4 and 5 list characteristics 
of child and adult Medicaid beneficiaries, respectively, stratified by known and predicted disability status 
(based on the 80 percent threshold). For both children and adults, beneficiaries with known or suspected 
disabilities tend to be older and are more likely to be male than those with no known or suspected 
disability. Children with known disability are slightly more likely to live in urban areas, while the opposite 
is true for adults. For both age groups, those with no known disability are much more likely to live in an 
expansion state than those with a known disability. 

Although those with a known disability are less likely to be non-Hispanic white than those without a 
known disability, this group has higher representation among those with suspected disability; these 
seeming contradiction likely reflects confounding between race and other predictors that are associated 
with known disability. Similarly, other racial groups do not show clear associations between disability 
status and race. 

Seventy-one percent of children and 94 percent of adults with a known disability qualified for Medicaid 
on the basis of disability, whereas those without a known disability primarily qualified for Medicaid based 
on financial criteria (through pathways designed for children and adults, respectively). About half (49 
percent) of children with a known disability receive SSI benefits, while one-quarter (26 percent) of those 
with a known disability receive SSDI benefits and 13 percent receive personal care HCBS. Among adults 
with a known disability, 63 percent receive SSI benefits, 27 percent receive SSDI benefits, and 10 percent 
receive personal care HCBS. 

As previously noted, the most important predictors of disability among the chronic condition flags, for 
adults and children, are factors associated with learning and developmental disabilities, including autism. 
Hearing loss is also associated with disability among children. 

Table 4. Characteristics of beneficiaries ages 0 to 18 based on disability group and predicted 
probability of having a disability, 2019 

Characteristic 

Known Disability 
 

N (%) 

Suspected Disability 
(Predicted probability 

≥80%) 
N (%) 

No Known or Suspected 
Disability (Predicted 
probability <80%) 

N (%) 
Total 1,691,179  33,975  28,550,937  
Age       
0-5 years 273,697 (16.2%) 6,135 (18.1%) 8,662,203 (30.3%) 
6-10 years 488,652 (28.9%) 12,681 (37.3%) 8,089,257 (28.3%) 
11-18 years 928,830 (54.9%) 15,159 (44.6%) 11,799,477 (41.3%) 
Sex       
Female 587,065 (34.7%) 8,548 (25.2%) 14,157,520 (49.6%) 
Male 1,104,102 (65.3%) 25,427 (74.8%) 14,390,010 (50.4%) 
Unknown 12 (0.0%) 0 (0.0%) 3,407 (0.0%) 
Geographic location       
Urban 1,362,600 (80.6%) 27,363 (80.5%) 22,546,779 (79.0%) 
Rural 315,079 (18.6%) 6,332 (18.6%) 5,824,718 (20.4%) 
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Characteristic 

Known Disability 
 

N (%) 

Suspected Disability 
(Predicted probability 

≥80%) 
N (%) 

No Known or Suspected 
Disability (Predicted 
probability <80%) 

N (%) 
Unknown 13,500 (0.8%) 280 (0.8%) 179,440 (0.6%) 
Race and ethnicity       
American Indian and Alaska 
Native, Non-Hispanic 13,949 (0.8%) 303 (0.9%) 402,886 (1.4%) 
Asian, Non-Hispanic 23,191 (1.4%) 659 (1.9%) 862,483 (3.0%) 
Black, Non-Hispanic 367,903 (21.8%) 5,770 (17.0%) 5,148,876 (18.0%) 
Hawaiian/Pacific Islander, Non-
Hispanic 3,607 (0.2%) 94 (0.3%) 172,668 (0.6%) 
Hispanic, All Races 285,505 (16.9%) 3,917 (11.5%) 7,300,107 (25.6%) 
Multiracial, Non-Hispanic 4,691 (0.3%) 66 (0.2%) 93,413 (0.3%) 
White, Non-Hispanic 497,374 (29.4%) 11,486 (33.8%) 8,855,526 (31.0%) 
Unknown 494,959 (29.3%) 11,680 (34.4%) 5,714,978 (20.0%) 
Eligibility group    
Disabled 1,208,985 (71.5%) 0 (0.0%) 0 (0.0%) 
Pregnant 225 (0.0%) * 26,719 (0.1%) 
Children 276,357 (16.3%) 32,800 (96.5%) 28,087,802 (98.4%) 
Adult 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Adult expansion 55 (0.0%) * 35,565 (0.1%) 
Unknown 8,059 (0.5%) 1,111 (3.3%) 400,851 (1.4%) 
SSI receipt 820,997 (48.5%) 0 (0.0%) 0 (0.0%) 
SSDI receipt 436,373 (25.8%) 0 (0.0%) 0 (0.0%) 
State of residence    
Expansion state 996,696 (58.9%) 21,891 (64.4%) 17,808,670 (62.4%) 
Non-expansion state 694,483 (41.1%) 12,084 (35.6%) 10,742,267 (37.6%) 
Service use    
Any personal care service use 213,992 (12.7%) 0 (0.0%) 0 (0.0%) 
Any HCBS use 700,498 (41.4%) 22,461 (66.1%) 4,785,944 (16.8%) 
Any inpatient stay 216,483 (12.8%) 11,725 (34.5%) 2,116,763 (7.4%) 
Top 5 conditions or condition 
categories    
Extreme low birth weight/preterm 
conditions (CDPS) 14,750 (0.9%) 481 (1.4%) 10,264 (0.0%) 
Autism spectrum disorders (CCW) 354,911 (21.0%) 23,990 (70.6%) 226,489 (0.8%) 
Sensory – deafness and hearing 
impairment (CCW) 52,115 (3.1%) 3,175 (9.3%) 124,116 (0.4%) 
Learning disabilities (CCW) 531,055 (31.4%) 26,069 (76.7%) 1,435,474 (5.0%) 
Psychiatric, low (CDPS)a 768,166 (45.4%) 26,145 (77.0%) 3,237,984 (11.3%) 

Source: Mathematica’s analysis of 2019 TAF. 
Note: An 80% threshold was selected to display characteristics of the sample from the children’s model. The sample for the 

children’s model includes Medicaid-only enrollees ages 0 to 18 with full-scope benefits and continuous enrollment in 2019. 
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aThe CDPS creates a hierarchy within categories to reflect severity. “Low” designates lower-cost psychiatric disorders. 
*Cell is masked due to small sample size. 
CCW = Chronic Conditions Data Warehouse; CDPS = Chronic Illness and Disability Payment System; HCBS = home and community-

based service; SSI = Supplemental Security Income; SSDI = Social Security Disability Insurance; TAF = T-MSIS Analytic File. 

 

Table 5. Characteristics of beneficiaries ages 19 to 64 based on disability group and predicted 
probability of having a disability, 2019 

Characteristic 

Known Disability 
 

N (%) 

Suspected Disability 
(Predicted probability 

≥80%) 
N (%) 

No Known or Suspected 
Disability (Predicted 
probability <80%) 

N (%) 
Total 3,622,524  56,757  18,713,313  
Age       
19-30 years 827,795 (22.9%) 11,649 (20.5%) 7,041,445 (37.6%) 
31-45 years 811,348 (22.4%) 9,734 (17.2%) 6,624,617 (35.4%) 
46-55 years 804,763 (22.2%) 20,864 (36.8%) 2,947,085 (15.7%) 
56-64 years 1,178,618 (32.5%) 14,510 (25.6%) 2,100,166 (11.2%) 
Sex       
Female 1,848,083 (51.0%) 20,308 (35.8%) 11,425,538 (61.1%) 
Male 1,774,426 (49.0%) 36,449 (64.2%) 7,287,706 (38.9%) 
Unknown 0 (0.0%) 0 (0.0%)  69 (0.0%) 
Geographic location       
Urban 2,790,846 (77.0%) 47,664 (84.0%) 15,290,279 (81.7%) 
Rural 786,967 (21.7%) 8,540 (15.0%) 3,293,287 (17.6%) 
Unknown 44,711 (1.2%) 553 (1.0%) 129,747 (0.7%) 
Race and ethnicity       
American Indian and Alaska 
Native, Non-Hispanic 43,071 (1.2%) 611 (1.1%) 298,909 (1.6%) 
Asian, Non-Hispanic 72,191 (2.0%) 633 (1.1%) 1,108,705 (5.9%) 
Black, Non-Hispanic 873,736 (24.1%) 19,112 (33.7%) 3,137,433 (16.8%) 
Hawaiian/Pacific Islander, Non-
Hispanic 12,006 (0.3%) 188 (0.3%) 110,954 (0.6%) 
Hispanic, All Races 396,189 (10.9%) 4,175 (7.4%) 3,604,321 (19.3%) 
Multiracial, Non-Hispanic 5,796 (0.2%) 37 (0.1%) 22,478 (0.1%) 
White, Non-Hispanic 1,476,852 (40.8%) 23,449 (41.3%) 7,408,741 (39.6%) 
Unknown 742,683 (20.5%) 8,552 (15.1%) 3,021,772 (16.1%) 
Eligibility group    
Disabled 3,404,785 (94.0%) 0 (0.0%)  0 (0.0%) 
Pregnant 2,203 (0.1%) 59 (0.1%) 247,751 (1.3%) 
Children 8,371 (0.2%) 2,059 (3.6%) 619,814 (3.3%) 
Adult 65,434 (1.8%) 7,608 (13.4%) 5,963,496 (31.9%) 
Adult expansion 104,797 (2.9%) 46,625 (82.1%) 11,745,755 (62.8%) 
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Characteristic 

Known Disability 
 

N (%) 

Suspected Disability 
(Predicted probability 

≥80%) 
N (%) 

No Known or Suspected 
Disability (Predicted 
probability <80%) 

N (%) 
Unknown 36,934 (1.0%) 406 (0.7%) 136,497 (0.7%) 
SSI receipt 2,269,273 (62.6%) 0 (0.0%)  0 (0.0%) 
SSDI receipt 983,267 (27.1%) 0 (0.0%)  0 (0.0%) 
State of residence    
Expansion state 2,295,661 (63.4%) 53,860 (94.9%) 16,393,275 (87.6%) 
Non-expansion state 1,326,863 (36.6%) 2,897 (5.1%) 2,320,038 (12.4%) 
Service use    
Any personal care service use 369,613 (10.2%) 0 (0.0%)  0 (0.0%)  
Any HCBS use 1,767,895 (48.8%) 45,259 (79.7%) 4,584,092 (24.5%) 
Any inpatient stay 950,987 (26.3%) 35,739 (63.0%) 2,806,199 (15.0%) 
Top 5 conditions or condition 
categories       
Autism spectrum disorders (CCW) 133,494 (3.7%) 5,467 (9.6%) 18,145 (0.1%) 
Intellectual disabilities and related 
conditions (CCW) 291,540 (8.0%) 14,284 (25.2%) 12,017 (0.1%) 
Learning disabilities (CCW) 59,343 (1.6%) 3,051 (5.4%) 16,122 (0.1%) 
Psychiatric, high (CDPS)a 363,216 (10.0%) 28,562 (50.3%) 133,641 (0.7%) 
Psychiatric, low (CDPS)a 988,835 (27.3%) 18,011 (31.7%) 2,629,500 (14.1%) 

Source: Mathematica’s analysis of 2019 TAF. 
Note: An 80% threshold was selected to display characteristics of the sample for the adult model. The sample for the adult model 

includes Medicaid-only enrollees ages 19 to 64 with full-scope benefits and continuous enrollment in 2019.  
aThe CDPS creates a hierarchy within categories to reflect severity. “High” designates high-cost psychiatric disorders and “low” 

designates lower-cost psychiatric disorders. 
CCW = Chronic Conditions Data Warehouse; CDPS = Chronic Illness and Disability Payment System; HCBS = home and community-

based service; SSI = Supplemental Security Income; SSDI = Social Security Disability Insurance; TAF = T-MSIS Analytic File. 
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IV. Conclusions 
The models for adults and children showed strong predictive performance based on AUROC statistics well 
above 0.8, which suggests that the models include relevant predictors that help distinguish known 
disability among the sample. The predictors included a broad list of demographic, diagnostic, and 
utilization indicators, and many of these different types of predictors were selected in the models. This 
suggests that including a variety of characteristics and diagnostic factors was an important feature of the 
model. Some of the most important predictors included demographic characteristics that are 
straightforward to identify from TAF. For example, for both adults and children, beneficiaries with a known 
disability are more likely to be male and in an older age bracket than those with no known disability. The 
diagnostic indicators that were most predictive for both groups included those related to intellectual and 
learning disabilities, autism spectrum disorders, and psychiatric conditions. Only a narrow set of utilization 
indicators were selected in the models, mostly reflecting specific types of HCBS use. 

Although the AUROC showed strong predictive performance, known disability among the child and adult 
populations in Medicaid is still a relatively rare outcome and resulted in low model sensitivity. Specifically, 
most of the predictions from both models were less than 25 percent for both groups, highlighting that 
the presence of other factors we were unable to capture in the models to predict disability. This finding 
underscores the difficulty in capturing concepts such as functional limitations from claims-based 
indicators, and likely makes claims insufficient for estimating exact numbers of persons with disabilities in 
the program. 

Using an 80 percent threshold, the models identified 33,975 children and 56,757 adults as potentially 
disabled but without a known disability, representing 0.12 and 0.30 percent, respectively, of the 
populations with no known disability. Although lowering the threshold would increase the number of 
beneficiaries identified as disabled, the trade-off would be a lower specificity, or less confidence that the 
identified beneficiaries have a true disability. Although no threshold will be able to distinguish perfectly 
between people with and without a true disability, it may be worth carefully considering whether a 
threshold should be more or less inclusive. 

This work provided a strong foundation for further exploring claims-based models that predict disability 
among the Medicaid population. Next steps could include identifying an external data source that would 
allow validation for the people with a known disability and examining the utilization and cost patterns of 
each of the groups.  
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Extracted studies 
• Ben-Shalom, Y., and Stapleton, D.C. “Predicting Disability among Community-Dwelling Medicare 

Beneficiaries Using Claims-Based Indicators.” Health Services Research 51.1 (2016): 262–281.  

• Leyenaar, J.K., Schaefer, A.P., Freyleue, S.D., Austin, A.M., Simon, T.D., Van Cleave, J., Moen, E.L., 
O’Malley, A.J., and Goodman, D.C. “Prevalence of Children With Medical Complexity and Associations 
With Health Care Utilization and In-Hospital Mortality,” JAMA pediatrics 176.6 (2022), e220687-
e220687.  

• Kim, D.H., Patorno, E., Pawar, A., Lee, H., Schneeweiss, S., and Glynn, R.J. “Measuring Frailty in 
Administrative Claims Data: Comparative Performance of Four Claims-Based Frailty Measures in the 
U.S. Medicare Data.” The Journals of Gerontology. Series A 75.6 (2020): 1120–1125.  

– Compared: Disability Index: Davidoff (2013); ADL dependency Index: Faurot (2015); Frailty Index: 
Segal (2017); Frailty (CFI) Index: Kim (2018) 

• Heins, S.E., Agniel, D., Mann, J., and Sorbero, M.E., “Comparative Performance of Three Claims-Based 
Frailty Measures Among Medicare Beneficiaries.” Journal of Applied Gerontology 43.6 (2024): 765–774.  

• Shashikumar S.A., Huang K, Konetzka R.T., and Joynt Maddox K.E. “Claims-based Frailty Indices: A 
Systematic Review.” Medical care 58.9 (2020): 815-825.  

– Reviewed: Shashikumar (2020); De la Garza Ramos (2016); Gilbert (2018); Hope (2018); Hope 
(2015); Joynt (2017); Kim (2020); Kim (2015); Kim (2019); Lunney (2002); Moldovan (2020); Olsen 
(2018); Orkaby (2019); Segal (2017); Segal (2017); Soong (2015); Soong (2018); Wu (2019) 

• Chien A.T., Spence S.J., Okumura M.J., Lu S., Chan C.H., Houtrow A.J., Kuo D.Z., Van Cleave J.M., 
Shanske S.A., Schuster M.A., Kuhlthau K.A., and Toomey S.L., “Impairment Types and Combinations 
Among Adolescents and Young Adults with Disabilities: Colorado 2014-2018.” Academic pediatrics 
24.4 (2024): 587-595.  

• Straub L., Bateman B.T., Hernandez-Diaz S., York C., Zhu Y., Suarez E.A., Lester B., Gonzalez L., Hanson 
R., Hildebrandt C., Homsi J., Kang D., Lee K.W.K., Lee Z., Li L., Longacre M., Shah N., Tukan N., Wallace 
F., Williams C., Zerriny S., Mogun H., and Huybrechts K.F. “Validity of claims-based algorithms to 
identify neurodevelopmental disorders in children.” Pharmacoepidemiology and drug safety 30.12 
(2021): 1635-1642. 

Identified algorithms and indicators 

Disability 
• Chronic Illness and Disability Payment System  

• Access Risk Classification System 

• SSA Health Information Technology business rules  

• Psychiatric, cognitive, and intellectual disorder-specific disability indicators 

• Complex Chronic Condition Classification System  

• Pediatric Medical Complexity Algorithm  
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• Children with Disabilities Algorithm and Diagnosis-to-Impairment Types Algorithm  

• Claims-based disability indexes (Davidoff, Faurot, Olsen, Wu) 

• Straub Claims-Based Neurodevelopmental Disorder Algorithm 

Frailty 
• Claims-based frailty indexes (Segal, Kim) 

• Pre-Hospital Frailty Model 

• RAND Activity and Mobility Index 

• RAND Memory Index 

• Frailty indexes for specific or international populations: Metastatic Spinal Tumor Frailty Index, Hospital 
Frailty Risk Score, Medically Complex Frailty subgroup, Frail Decedent Subgroup, Statistical Learning-
Based Frailty Index, Veteran Frailty Index, Soong Frailty Model 

Key takeaways 
• Measurement period: Among the studies we considered in this targeted environmental scan, the 

most common measurement period used to capture predictors was 12 months. Indicators used 
lookback periods ranging from six months to four years but usually 12–24 months. Indicators 
designed to predict health outcomes often used an index date, such as hospital admission, to define 
the end of the lookback period. 

• Validation: Studies most commonly used linked self-reported health status data from surveys or 
medical record data to validate index performance, sometimes coupled with parent or physician 
perspectives. 

– Among studies that only used claims data, they used these data to create the index and either (1) 
identified people in the data set who did not have the condition of interest (frailty or disability) as 
a comparison group, or (2) randomly generated training and test sets from the same source to 
calculate predictive probabilities. 

• Data sources: Studies most commonly used Medicare data, either alone or linked with other data 
sources for validation. Although less common, a few other studies used all-payer claims data, 
Medicaid data, other hospital or national survey data, or international data sets (identified in a 
systematic review). 

• Populations and age groups. Studies covered a range of age groups, from children to older adults. 
The studies that considered only older populations typically focused on predicting frailty or limitations 
on activity of daily living, while those that considered only younger populations typically focused on 
medical complexity and specific disorders. 

• Algorithm definitions. All study algorithms used a combination of diagnoses and conditions 
(whether grouped or included individually), with the total number and type of conditions or diagnoses 
varying across algorithms. 

– Few algorithms used utilization of services as predictors, but among those that did, it was typically 
related to use of durable medical equipment (DME). Some also included nursing facility care, 
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rehabilitation services, hospital-acquired problems, or other variables considered proxies for 
cognitive or physical impairment. 

– Some algorithms grouped conditions by body system (for example, cardiovascular, skeletal) or 
condition type (for example, physical, mental) and created an algorithm score based on the totals 
within each category.  

– Some algorithms simply looked for the presence of certain codes in claims (presence of 1+ or 2+ 
codes = 1, absence = 0), while others were more complex and assigned probabilistic values or 
coefficients to different conditions based on their relative importance to the variable of interest.  

– Some algorithms used demographic characteristics along with diagnoses or conditions as 
predictors, but some of the findings from comparative studies suggest that indexes that included 
demographic variables are unlikely to provide a large improvement in risk prediction and case-
mix adjustment beyond demographic variables (at least based on findings for those measuring 
frailty among the older population). 

• Conditions. Some algorithms used existing condition lists to identify relevant conditions, including 
the Charlson Comorbidity Index, the Social Security Administration Listing of Impairments, or the 
Centers for Medicare & Medicaid Services Chronic Conditions Data Warehouse. Studies often 
included hundreds of individual International Classification of Disease, Current Procedural 
Terminology, and Healthcare Common Procedure Coding System codes in their list of relevant 
conditions.  

– Frailty indicators usually included conditions related to aging and functional impairment such as 
dementia, senility, incontinence, pressure ulcers, malnutrition, difficulty walking, falls, and 
indicators for DME use.  

– Indicators of medical complexity included more comprehensive lists of codes related to serious 
physical health conditions across multiple body systems, such as cardiovascular disease, diabetes, 
mental health conditions, infections, and renal failure.  

– General disability indicators included intellectual disabilities, neurological or developmental 
conditions, psychiatric disorders, and serious physical health conditions, such as cancer, paralysis, 
Parkinson’s disease, and stroke or brain injury, in addition to other indicators such use of an 
ambulance, life support, or DME.  

– Indicators focused on specific subsets of disability, such as neurodevelopmental disorders (Straub) 
or the RAND indexes for activity and for mobility and memory include a narrower list of 
conditions related to the type of limitations of interest. 

• Index development. Development methods for the study algorithms varied and included clinical 
review, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and logistic regression. 
After predictors were selected, the approaches for defining the algorithms included regression 
methods (such as logistic regression), index creation by combining various characteristics into a 
summary score, and identification of a threshold number of factors (such as conditions) to group 
people by disability, medical complexity, or frailty status. 
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– At least some predictors were usually initially selected a priori based on previous literature, or by 
consensus discussions among clinical experts. 

• Model performance. The models’ ability to predict disability or frailty status or health outcomes was 
usually evaluated using logistic regression, c-statistic, or area under the receiver operating 
characteristic curve. 

– Development, validation, and comparison studies calculated sensitivity and specificity to describe 
each model’s discriminative ability (for example, positive predictive value). During validation, 
some studies identified false positives and false negatives to examine algorithm assignment. 

Comparison studies used odds ratios, descriptive statistics, chi square tests, Spearman correlation 
coefficients, root mean squared error, bootstrap random sampling, and c-statistics to compare model 
performance. Studies also used other tests to assess and compare model performance. Some studies 
assessed model performance within subpopulations defined by demographics, social conditions, or 
health status. 
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Tables B.1 and B.2 list all predictors that were selected by the two LASSO models. They are listed in order 
of variable importance, determined by first fitting a standard logistic regression model for known 
disability that included only the selected predictors, and then ranking predictors based on the Wald Chi-
Squared statistic. 

Table B.1. Selected predictors of known disability for beneficiaries ages 0 to 18, ranked by 
variable importance (Scaled Wald Chi-Squared statistic) 

Predictor Type 
Degrees of 
Freedom 

Relative 
importance 

State Demographic 52 100.00 
Age Demographic 3 47.06 
Autism spectrum disorders Chronic condition indicator (CCW) 1 45.73 
Medicaid and/or CHIP enrollment Demographic 4 42.12 
Race and ethnicity Demographic 7 29.62 
Learning disabilities Chronic condition indicator (CCW) 1 18.87 
Psychiatric, low Chronic condition indicator (CDPS) 1 10.96 
Sex Demographic 2 7.24 
Round-the-clock services HCBS 1 5.82 
Extreme low birth weight/preterm conditions Chronic condition indicator (CDPS) 1 5.14 
Sensory – deafness and hearing impairment Chronic condition indicator (CCW) 1 4.27 
Caregiver support services HCBS 1 4.06 
Cerebral palsy Chronic condition indicator (CCW) 1 2.79 
Intellectual disabilities and related conditions Chronic condition indicator (CCW) 1 2.77 
Genetic conditions, any Chronic condition indicator (PMCA) 1 2.71 
Other developmental delays Chronic condition indicator (CCW) 1 2.62 
Developmental disability, low Chronic condition indicator (CDPS) 1 2.02 
Renal, low Chronic condition indicator (CDPS) 1 1.75 
Case management services HCBS 1 1.49 
Cardiovascular, low Chronic condition indicator (CDPS) 1 1.47 
Endocrinological, any Chronic condition indicator (PMCA) 1 1.43 
Non-medical transportation services HCBS 1 1.14 
Nursing services HCBS 1 1.06 
Central nervous system, low Chronic condition indicator (CDPS) 1 1.01 
Mental health, any Chronic condition indicator (PMCA) 1 0.97 
Skeletal, medium Chronic condition indicator (CDPS) 1 0.90 
Neuromuscular Chronic condition indicator (CCC) 1 0.82 
Epilepsy Chronic condition indicator (CCW) 1 0.57 
Chronic lung disease Chronic condition indicator (CCW) 1 0.55 
Malignancy Chronic condition indicator (CCC) 1 0.54 
Spina bifida and other congenital anomalies of 
the nervous system 

Chronic condition indicator (CCW) 1 0.53 

Metabolic, any Chronic condition indicator (PMCA) 1 0.42 
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Predictor Type 
Degrees of 
Freedom 

Relative 
importance 

Equipment, technology, and modifications 
services 

HCBS 1 0.36 

Cardiac, any Chronic condition indicator (PMCA) 1 0.35 
Other health and therapeutic services HCBS 1 0.25 
Anemia Chronic condition indicator (CCW) 1 0.24 
Neurological, any Chronic condition indicator (PMCA) 1 0.24 
Ambulance DME 1 0.20 
Pulmonary-Respiratory, multiple Chronic condition indicator (PMCA) 1 0.09 
Diabetes Chronic condition indicator (CCW) 1 0.08 
Pulmonary-Respiratory, any Chronic condition indicator (PMCA) 1 0.08 
Skeletal, low Chronic condition indicator (CDPS) 1 0.07 
Geography (urban or rural) Demographic 2 0.06 
Chronic kidney disease Chronic condition indicator (CCW) 1 0.06 
Central nervous system, high Chronic condition indicator (CDPS) 1 0.05 
Mental health, multiple Chronic condition indicator (PMCA) 1 0.02 
Other mental health and behavioral services HCBS 1 0.01 
Any progressive condition (PMCA 
classification) 

Chronic condition indicator (PMCA 1 0.00 

Childhood central nervous system, high Chronic condition indicator (CDPS) 1 0.00 
Asthma Chronic condition indicator (CCW) 1 0.00 
Childhood psychiatric, medium Chronic condition indicator (CDPS) 1 0.00 
Spinal cord injury Chronic condition indicator (CCW) 1 0.00 

Source: Mathematica’s analysis of 2019 TAF. 
Note: The sample for the children’s model includes Medicaid-only enrollees ages 0 to 18 with full-scope benefits and continuous 

enrollment in 2019. Relative importance is the Wald Chi-Squared statistic, rescaled linearly so that the largest value is 100. 
CCC = Complex Chronic Conditions index; CCW = Chronic Conditions Data Warehouse; CDPS = Chronic Illness and Disability 
Payment System; CHIP = Children’s Health Insurance Program; HCBS = home and community-based services; PMCA = Pediatric 
Medical Complexity Algorithm.  
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Table B.2. Selected predictors of known disability for beneficiaries ages 19 to 64, ranked by 
variable importance (scaled Wald Chi-Squared statistic) 

Predictor Type 
Degrees of 
Freedom 

Relative 
importance 

State Demographic 52 100.00 
Age Demographic 2 28.38 
Psychiatric, high Chronic condition indicator (CDPS) 1 25.84 
Race and ethnicity Demographic 7 6.71 
Psychiatric, low Chronic condition indicator (CDPS) 1 6.57 
Autism spectrum disorders Chronic condition indicator (CCW) 1 5.33 
Sex Demographic 1 4.76 
Round-the-clock services HCBS 1 4.08 
Intellectual disabilities and related conditions Chronic condition indicator (CCW) 1 3.15 
Case management services HCBS 1 2.35 
Learning disabilities Chronic condition indicator (CCW) 1 2.15 
Cerebral palsy Chronic condition indicator (CCW) 1 2.11 
Psychiatric, medium Chronic condition indicator (CDPS) 1 1.58 
Pregnancy with complications Chronic condition indicator (CDPS) 1 1.55 
Pulmonary, low Chronic condition indicator (CDPS) 1 1.41 
Developmental disability, low Chronic condition indicator (CDPS) 1 1.33 
Ambulance DME 1 1.33 
Chronic Obstructive Pulmonary Disease Chronic condition indicator (CCW) 1 1.28 
Fibromyalgia, chronic pain and fatigue Chronic condition indicator (CCW) 1 1.26 
Central nervous system, high Chronic condition indicator (CDPS) 1 1.23 
Infectious, high Chronic condition indicator (CDPS) 1 1.12 
Rheumatoid arthritis/osteoarthritis Chronic condition indicator (CCW) 1 1.01 
Epilepsy Chronic condition indicator (CCW) 1 0.99 
Genital, extra low Chronic condition indicator (CDPS) 1 0.91 
Day services HCBS 1 0.84 
Oxygen DME 1 0.82 
Non-medical transportation services HCBS 1 0.81 
Caregiver support services HCBS 1 0.78 
Central nervous system, very high Chronic condition indicator (CDPS) 1 0.74 
Renal, low Chronic condition indicator (CDPS) 1 0.73 
Wheelchair DME 1 0.67 
Substance abuse, low Chronic condition indicator (CDPS) 1 0.61 
Central nervous system, low Chronic condition indicator (CDPS) 1 0.61 
Cardiovascular, very high Chronic condition indicator (CDPS) 1 0.50 
Peripheral vascular disease Chronic condition indicator (CCW) 1 0.48 
Cataract Chronic condition indicator (CCW) 1 0.40 
Cerebrovascular, medium Chronic condition indicator (CDPS) 1 0.39 



Appendix B Important Predictors of Known Disability 

Mathematica® Inc. B-6 

Predictor Type 
Degrees of 
Freedom 

Relative 
importance 

Viral Hepatitis Chronic condition indicator (CCW) 1 0.37 
Cardiovascular, low Chronic condition indicator (CDPS) 1 0.35 
Sensory – deafness and hearing impairment Chronic condition indicator (CCW) 1 0.35 
Any inpatient stay Inpatient stays and readmissions 1 0.34 
Pregnancy (routine) Chronic condition indicator (CDPS) 1 0.33 
Hypertension Chronic condition indicator (CCW) 1 0.33 
Skeletal, medium Chronic condition indicator (CDPS) 1 0.30 
Substance abuse, very low Chronic condition indicator (CDPS) 1 0.30 
Diabetes, type 2 Chronic condition indicator (CDPS) 1 0.25 
Geography (urban or rural) Demographic 2 0.25 
Pulmonary, medium Chronic condition indicator (CDPS) 1 0.24 
Equipment, technology, and modifications HCBS 1 0.15 
Anemia Chronic condition indicator (CCW) 1 0.14 
Diabetes Chronic condition indicator (CCW) 1 0.12 
Central nervous system, medium Chronic condition indicator (CDPS) 1 0.11 
Glaucoma Chronic condition indicator (CCW) 1 0.10 
Cardiovascular, extra low Chronic condition indicator (CDPS) 1 0.08 
Other mental health and behavioral services HCBS 1 0.07 
Heart failure and non-ischemic heart disease Chronic condition indicator (CCW) 1 0.07 
Hyperlipidemia Chronic condition indicator (CCW) 1 0.06 
Skeletal, low Chronic condition indicator (CDPS) 1 0.04 
Lung cancer Chronic condition indicator (CCW) 1 0.03 
Tobacco use disorders Chronic condition indicator (CCW 1 0.02 
Gastro, low Chronic condition indicator (CDPS) 1 0.02 
Other health and therapeutic services HCBS 1 0.01 

Source: Mathematica’s analysis of 2019 TAF. 
Note: The sample for the children’s model includes Medicaid-only enrollees ages 19 to 64 with full-scope benefits and continuous 

enrollment in 2019. Relative importance is the Wald Chi-Squared statistic, rescaled linearly so that the largest value is 100. 
CCW = Chronic Conditions Data Warehouse; CDPS = Chronic Illness and Disability Payment System; CHIP = Children’s Health 
Insurance Program; HCBS = home and community-based services. 
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