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1.0  INTRODUCTION 

Estimates of the likely costs, benefits, and distributional effects of proposed regulations 
are inherently uncertain. To develop these estimates, analysts must collect data and 
construct models that attempt to predict the future. These models rely on information that 
may be subject to limitations related to: the quality of the methods used to collect the 
data; the extent to which the data address the same population, industries, or geographic 
area as the regulation; and the degree to which conditions may change between when the 
data were collected and when the regulation is implemented. The models also require 
many assumptions. For example, analysts must make assumptions about how regulated 
entities will respond to the regulation (e.g., likely compliance rates; the methods likely to 
be chosen to achieve compliance; etc.). They must also make assumptions about the 
future state of the world in the absence of the regulation (e.g., future output in regulated 
industries; exposure risks absent intervention, etc.).1 

A critical challenge for analysts is to clearly describe the key sources of uncertainty 
associated with these estimates, in qualitative or quantitative terms, in the regulatory 
impact analysis (RIA). The goal is to ensure that decision-makers and other stakeholders 
understand the extent to which uncertainty – in the data, models, and assumptions – 
affects the main analytic conclusions. A well-developed presentation of uncertainty can 
aid decision-makers in understanding the confidence they should have in the results and 
the magnitude of any bias. 

For example, if the agency’s best estimates suggest that benefits exceed costs for a 
particular regulatory option, how likely is it that this conclusion would be reversed given 
uncertainty about the magnitudes of the quantified effects and the potential impact of 
non-quantified effects? Might these uncertainties affect the relative rankings of the policy 
options? Answering these questions requires quantifying impacts to the greatest extent 
possible, and identifying key sources of uncertainty and exploring them in both 
quantitative and qualitative terms. Over time, analysts can work to reduce uncertainty and 
minimize the types of effects that cannot be quantified by anticipating future analytic 
needs and investing in research that will be useful across a variety of regulatory analyses. 

In 2016, the U.S. Department of Health and Human Services (HHS) finalized its 
Guidelines for Regulatory Impact Analysis (hereafter Guidelines) under the leadership of 
its Assistant Secretary for Planning Evaluation (ASPE) and Analytics Team. In Chapter 
6, “Address Uncertainty and Nonquantifiable Effects,” the Guidelines discuss strategies 
for characterizing the uncertainty in quantified effects as well as the potential impacts of 

 
1
 In this white paper, the discussion references prospective analysis of future regulations. The same challenges and tools 

apply to retrospective analysis of existing regulations. In retrospective analysis, analysts estimate the incremental effects 

of the regulation by comparing two scenarios: the world with the regulation (the “incremental scenario”) and the world 

without the regulation (the “counterfactual scenario”). The counterfactual scenario cannot be observed; it must be 

modeled, introducing uncertainty into estimates of incremental costs and benefits.  
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non-quantified effects. It provides an overview of basic concepts, along with a summary 
discussion of different approaches and their complexity. 

This white paper expands on the discussion provided in the Guidelines. It provides a 
more detailed discussion of terminology, tools, and methods that may be used in 
uncertainty and sensitivity analyses conducted as part of the development of an RIA. It 
also provides a discussion of methods that may be used for communicating uncertainty to 
different stakeholder audiences and summarizes best practices for conducting these 
analyses. This white paper does not constitute new Guidelines. 

2.0  TERMINOLOGY 

In this section, we introduce terminology commonly employed by analysts engaged in 
uncertainty analysis. We begin with a discussion of different types of uncertainty. Then, 
we provide definition for common terms used throughout the remainder of this white 
paper.  

2.1 TYPES OF UNCERTAINTY 

Uncertainty comes in two general forms: one that can more easily be modeled and 
quantified and one that cannot. These two forms are often referred to as “variability” and 
“uncertainty.” 

• Variability: refers to the inherent heterogeneity or diversity of data in an 
assessment (EPA 2021). Variability cannot be reduced, but it can be better 
characterized. For example, the height of individuals in a population is variable. 
Sampling a larger population of individuals provides a better picture of 
distribution of individual height in the population; however, variation will always 
exist. Variability is also referred to as “randomness” (Morgan and Henrion 1990). 

• Uncertainty: refers to a lack of data or an incomplete understanding of the 
context of the assessment (EPA 2021). For example, predictions about future 
trends in regulated industries are inherently uncertain, because one is attempting 
to predict the future. Similarly, characterizations of the likely change in behavior 
of affected entities in response to a new regulation may be subject to significant 
uncertainty. In both cases, uncertainty can be reduced or eliminated over time with 
new or better data. 

In fact, both are sources of uncertainty. The more academic terms for the distinction in 
types of uncertainty are “aleatory and epistemic uncertainties.” 

• Aleatory uncertainty. Uncertainty in assessments because events are inherently 
stochastic (Tannenbaum et al. 2017, Paté-Cornell, 1996). 

• Epistemic uncertainty. Uncertainty in assessments because of a lack of 
knowledge about what is true or what may happen. Epistemic uncertainties, while 
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not known now, are potentially knowable (Tannenbaum et al. 2017, Paté-Cornell, 
1996).2 

While technical in nature, it is clearer to describe the two distinct types of uncertainties 
using these terms.3,4  

Importantly, in their seminal text on addressing uncertainty in quantitative policy 
analysis, Morgan and Henrion (1990) note,  

A common mistake is failure to distinguish between variability due to sampling 
from a frequency distribution and empirical uncertainty that arises from 
incomplete scientific or technical knowledge…The uncertainty due to the 
variability can be reduced by disaggregation…whereas the scientific uncertainty 
can be reduced by further research…Examination of the first kind of uncertainty 
can tell you how much disaggregation is worthwhile in performing an 
assessment. Examination of the second kind of uncertainty may tell you about the 
relative importance of carrying out more…research. But this sort of uncertainty 
analysis is impossible unless the two kinds of uncertainty are carefully 
distinguished.  

Thus, understanding the difference between these types of uncertainty has important 
implications for interpreting information about uncertainty provided in an RIA and for 
developing and evaluating options for reducing that uncertainty in future analyses. In 
cases where aleatory uncertainty is more dominant, analysts might consider 
disaggregating the data and modeling subpopulations. In contrast, if epistemic uncertainty 
is more important, additional research may be necessary. 

2.2 GENERAL DEFINITIONS  

In this section, we provide definitions for additional key terminology.5  

• Correlation: A mathematical relationship between two sets of data indicating the 
probability that a dependency exists between the parameters underlying the two 
data sets and the strength of that (linear) dependency. This means that knowing 
the value of one parameter gives you some information about the value of the 
other. For example, a person’s height and weight are strongly correlated. Thinking 

 
2
 Makridakis, Hogarth, and Gaba (2009) provides an illustrative story of a person facing these two types of uncertainty, which 

they have nicknamed “subway” vs. “coconut” uncertainty. Their fictitious character Klaus faces regular “subway” 

uncertainty every day as his commute time varies around an average travel time of 43 minutes with 95 percent of the trips 

between 37 and 49 minutes. Their fictitious character Klaus also faces the possibility of a totally unexpected event with 

significant consequences such as a death by a coconut falling from a tree.  

3
 For example, under EPA’s more limited definition of uncertainty, “randomness” would not qualify as uncertainty. Such a 

distinction would be inconsistent with the academic literature.  

4
 In Circular A-4, OMB (2003) writes, “In some contexts, the word ‘variability’ is used as a synonym for statistical variation 

that can be described by a theoretically valid distribution function, whereas ‘uncertainty’ refers to a more fundamental 

lack of knowledge. Throughout this discussion [of the treatment of uncertainty in RIAs], we use the term ‘uncertainty’ to 

refer to both concepts. 

5
 Definitions are taken from Leach (2006), with the exceptions of “uncertainty”, “value of information,” and “dependence.” 
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about correlation is particularly important in Monte Carlo analysis, where analysts 
must account for correlation between distributions. For example, it could be 
problematic to independently draw height and weight from two different 
distributions during a simulation; the results might be nonsensical (e.g., a 6 foot 
tall individual is unlikely to weigh 100 pounds). 

• Cumulative Distribution: For a cumulative distribution, also called the “S-
curve,” values are plotted along the x-axis and the probability of occurrence of a 
value less than or equal to the given x-value is plotted on the y-axis. By definition, 
the y-axis goes from 0 to 1. It would be useful to display the output of a Monte 
Carlo simulation as a cumulative distribution if, for example, it is important to 
describe the value of concern at a 70 percent confidence level. 

• Decision Tree: An analysis tool in which several discrete values are used to 
represent uncertainty. A true decision tree would contain decision nodes 
representing different alternative choices. The term decision tree is often used to 
refer to tree diagrams without decisions, but tree diagrams without decision trees 
are more correctly referred to as event trees or probability trees. The “tree” is built 
from left to right with each uncertainty and/or decision appearing in chronological 
order. Probabilities are assigned for each branch of each uncertainty. Decision 
trees are used to both illustrate the relationships between key inputs in a process 
and as a modeling tool (see software tools such as the Palisade Company’s 
Precision Tree). 

• Dependence: Correlation (defined above) measures the linear dependence of two 
random variables, but variables can have non-linear dependency. Variables are 
considered dependent when knowing the value of one tells us something about the 
value of the other. Alternatively, two random variables are considered 
independent (and not correlated) when knowing the value that one random 
variable takes on tells us nothing about the distribution of the other.  

• Monte Carlo Simulation: A process in which a probability distribution is given 
for each of the inputs (e.g., number of affected entities, hours per inspection, wage 
rates per inspector) to some model (e.g., a model estimating total compliance 
costs) and then a computer calculates the output of the model many times (usually 
hundreds or thousands of times). On each trial, the computer draws a different 
value for each input parameter based on the defined input probability 
distributions. At the end of the simulation, statistics are calculated on the output 
variables of interest. Monte Carlo simulation is specifically referenced by OMB in 
Circular A-4 (OMB 2003) as a useful tool for formal, probabilistic analysis of 
proposed regulations. Descriptions of commonly used probability distributions are 
provided in Appendix A. 

• Tornado Chart: A chart used in sensitivity analyses to indicate the impact each 
uncertain variable has on the model output values. The tornado chart is useful for 
determining which sources of uncertainty have the potential to have the most 
significant impacts and which will have minimal impacts. For example, if the 
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output variable is the total costs of a rule, a tornado chart can be used to 
understand which uncertain variables have the biggest impact on the total cost 
estimate.  

• Uncertainty: A measure of a value of which we do not know and cannot know 
until sometime in the future. See the discussion above in Section 2.1. 

• Value of Information: The increase in the output of the analysis that comes from 
acquiring a certain piece of information. Analysts use the value of information to 
make decisions about how to allocate scarce research resources and to decide 
whether delaying action while collecting more information is preferable. 

3.0  SELECTING AN APPROACH 

As described in Chapter 1 of the Guidelines, Executive Orders 12866 and 13563 (Clinton 
1993, Obama 2011) direct Federal agencies to assess the costs and benefits of proposed 
regulations, as permitted by existing statutes. The Office of Information and Regulatory 
Affairs within the U.S. Office of Management and Budget (OMB) provides specific 
guidance in Circular A-4 (OMB 2003) on the estimation of regulatory costs and benefits 
and the preparation of RIAs. OMB encourages analysts to present “probability 
distributions of benefits and costs and include the upper and lower bound estimates as 
complements to central tendency and other estimates” (OMB 2003). However, it also 
recognizes that presenting probabilistic estimates may not always be practical or feasible. 
In such cases, OMB directs analysts to “balance thoroughness with the practical limits on 
your analytical capabilities.” 

Noting that an analysis does not need to include an exhaustive exploration of every 
source of uncertainty, OMB suggests first identifying the assumptions or data that have 
the largest potential effect on decision-making. For example, as described in Chapter 2 of 
the Guidelines, analysts might undertake screening analysis using readily available 
information and simple assumptions to provide preliminary information on potential costs 
and benefits and to identify key assumptions or data needs. The screening analysis may 
highlight the assumptions that make the biggest difference in the results and that could be 
the focus of additional research or consideration. Sensitivity analysis, described below 
and in Section 4.0 of this document, is another good tool for this purpose. 

If key sources of uncertainty are likely to have a significant effect on the conclusions 
about net benefits (e.g., the ranking of regulatory alternatives or whether net benefits are 
positive), OMB (2003) suggests that the agency consider additional research prior to 
rulemaking. Uncertainties may be significant enough to warrant delaying a decision until 
more information can be collected and assessed. When considering whether to 
recommend a delay, analysts should take into account both costs (e.g., of further data 
gathering efforts) and benefits (e.g., of the knowledge likely to be obtained from the new 
data). Delay may also have consequences for social welfare (e.g., if it allows dangerous 
practices to continue), which should also be considered along with the impacts of any 
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interim protective measures.6 In Section 6.0 of this document, we discuss approaches for 
estimating the value of collecting additional information in order to reduce uncertainty. 

The discussion above suggests that analysts have discretion when deciding which sources 
of uncertainty to explore, and what methods to use. Below, we provide additional 
guidance on how to make these choices. First, we discuss the guidance provided by OMB 
in Circular A-4. Then, we highlight additional considerations and summarize key 
questions for analysts to consider as they make choices about how to proceed with 
uncertainty analysis. 

3.1 OMB GUIDANCE 

In Circular A-4, OMB outlines three approaches for addressing uncertainty and provides 
general guidance on when each should be used. Each of these approaches serves to 
improve decision-makers’ and the public’s understanding of the range of impacts possible 
under a regulation and is superior to ignoring uncertainty entirely. Ranked from less 
rigorous to more rigorous, these approaches include: 

• Qualitative Discussion. Qualitative discussion of key sources of uncertainty is 
the least rigorous approach, but is of significant importance. It should always be 
included in the RIA. This approach involves disclosing key assumptions and 
uncertainties and including information about the implications. To the greatest 
extent possible, the qualitative discussion should include both the likely direction 
of the potential bias (i.e., whether the assumption may lead to an under- or over-
estimate of the impacts) and the likely magnitude of the effect (e.g., whether it is 
major or minor). Such information will help decision-makers and others better 
understand the implications of the analysis. 

• Numerical Sensitivity Analysis. Numerical sensitivity analysis allows the analyst 
to explore the effects of varying the values of key parameters and is often used to 
determine whether uncertainty about particular components or assumptions may 
substantially affect the analytic result, as well as when data limitations or 
constrained resources prevent full probabilistic analysis. Sensitivity analysis may 
be particularly useful in situations where the qualitative discussion raises 
questions about the robustness of the results or where the consequences of the rule 
are large. Methods for communicating the results of a sensitivity analysis vary and 
may include the presentation of alternative scenarios reflecting different, plausible 
assumptions for key parameters. 

• Probabilistic Analysis. OMB (2003) recommends using “probabilistic analysis” 
to explore key sources of uncertainty for “complex rules where there are large, 
multiple uncertainties whose analysis raises technical challenges, or where the 
effects cascade.” Additionally, probabilistic analysis is required for rules with 
annual costs or benefits exceeding $1 billion. Such analysis often involves the use 
of Monte Carlo simulation (discussed in Section 4.0) to quantify the probability 

 
6
 If the timing of the regulation is determined by statute or court order, delay may not be possible. 
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distributions of anticipated costs or benefits. It provides decision-makers with 
information about the variance, or spread, of the statistical distribution of 
estimated impacts. This information may be particularly useful when the expected 
value of net benefits is close to zero or similar across multiple policy alternatives. 
In such cases, decision-makers may feel more confident about the results if they 
have a smaller variance, because the realized results are more likely to be near the 
expected value. OMB also suggests the use of expert elicitation (discussed in 
Section 5.0) to characterize uncertainty in terms of a distribution for use in 
simulations. 

Finally, OMB (2003) also identifies break-even analysis as a useful tool in situations 
where it is not possible to quantify all of the important benefits and costs likely to result 
from a proposed regulation. Break-even analysis assists decision-makers in thinking 
about whether it is plausible that the regulation will result in positive net benefits (e.g., 
benefits that exceed costs), given existing data gaps (e.g., uncertainties). Break-even 
analysis is discussed below in Section 4.0.  

3.2 OTHER CONSIDERATIONS 

In addition to the guidance provided in Circular A-4, analysts should also consider what 
is at stake in the rulemaking effort when selecting an approach for addressing uncertainty. 
A high stakes rule may be one that is likely to result in large costs or benefits (described 
above in Section 3.1), have significant distributional impacts, raise major concerns about 
equity, or otherwise be highly controversial.7 A low stakes rule has the opposite 
characteristics. Ultimately, the decision about how to categorize a particular rule for the 
purpose of making analytic choices is a judgment made by the agency. Generally, higher 
stakes regulations justify allocating more time and resources and employing more 
complex approaches for investigating or resolving uncertainty. For lower stakes rules, 
simpler approaches and qualitative discussion of uncertainty may be sufficient. 

Analysts should be careful to use quantitative tools judiciously. The simple availability of 
a tool does not justify its use. For example, in some cases, data limitations prevent the 
quantification of the benefits of a proposed rule, and analysts discuss benefits 
qualitatively. In these cases, complex analysis of costs may be important for many of the 
reasons described above (e.g., the rule is likely to be subject to considerable scrutiny, 
probabilistic analysis is required because costs are likely to exceed $1 billion in a given 
year). However, if costs are small, and stakes are low, and quantitative analysis of 
uncertainty will not help improve decision-making, then a qualitative discussion of 
uncertainty may be sufficient.8  

 
7
 For example, even when a rule is unlikely to result in costs or benefits exceeding $100 million in a given year, the agency 

may be aware that the regulation is likely to be the subject of intense public scrutiny due to a high degree of stakeholder 

interest. The agency may also be concerned about the likelihood of litigation after the regulation in promulgated. In these 

situations, more robust uncertainty analysis will likely provide additional support to the agency in demonstrating that it 

followed a reasoned decision-making process (i.e., its decision was not arbitrary or capricious). 

8
 For example, imagine a low-stakes rule where the analyst is able to quantify costs but not benefits. For the cost analysis, 

she has probability distributions for parameters with small variance, while distributions for key parameters with large 
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3.3 KEY QUESTIONS TO ASK WHEN SELECTING AN APPROACH 

In Exhibit 1, we summarize key questions for analysts to consider as they make decisions 
about whether to address uncertainty in an RIA qualitatively or quantitively. At a 
minimum, all RIAs should include a qualitative discussion. Many combine qualitative 
and quantitative approaches. 

EXHIBIT 1.  SELECTING AN APPROACH FOR ADDRESSING UNCERTAINTY 

QUESTION RECOMMENDATION 

Will the regulation result in costs or benefits 
exceeding $1 billion in a given year? 

If the answer is “yes,” then probabilistic 
analysis is required by OMB. 

Will the regulation result in costs or benefits 
exceeding $100 million but less than $1 
billion in a given year? 

Probabilistic analysis is not required however 
OMB recommends using more complex 
approaches. These approaches may include, for 
example, Monte Carlo simulation, numerical 
sensitivity analysis, or scenario analysis.  

Will the regulation result in costs and 
benefits each less than $100 million in a given 
year? 

The recommended approach depends on 
additional factors, discussed below. 

Do simpler methods provide robust 
results?  If “yes,” then simpler methods are sufficient. 

Is the uncertainty in the modeling results 
sufficiently large that net benefits could 
be positive or negative? 

If “yes” then more complex methods are 
justified. 

Is the uncertainty in the modeling results 
sufficiently large that the ranking of 
regulatory alternatives could change? 

If “yes,” then more complex methods are 
justified. 

Does available information lend itself to a 
quantitative tool that will improve 
decision-making? 

If “yes,” then more complex methods are 
justified. 

Is this a “high stakes” rule? If “yes,” then more complex methods are 
justified. 

Do data limitations prevent the 
quantification of certain impacts, and 
would the benefits of additional 
information outweigh the costs of 
collecting it and any delay in regulatory 
action? 

If the answer is “yes,” then additional effort to 
quantify impacts is justified. Otherwise, 
qualitative analysis is likely to be sufficient. 

Note: 
Examples of simpler methods include qualitative discussion of uncertainty and break-even 
analysis. More complex methods attempt to characterize uncertainty quantitatively using 
sensitivity and scenario analysis, or probabilistically using tools such Monte Carlo analysis. 

 
variance are unknown. In this situation, presenting cost estimates resulting from a Monte Carlo simulation may provide a 

false sense of precision, because the range of possible costs will not reflect the key source of uncertainty in the analysis. In 

such a situation, qualitative discussion of the key sources of uncertainty in the cost estimate, paired with the qualitative 

discussion of possible benefits, may be more easily interpreted by the decision-maker. 
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4.0 TOOLS 

In this section, we describe several tools that may be helpful in addressing uncertainty in 
regulatory analyses. These tools are not mutually exclusive; a strong analysis may use 
multiple tools in combination. At a general level, we present the tools in the order of 
increasing level of analytic sophistication.  

We begin with a discussion of break-even analysis, which does not explicitly treat 
uncertainty but judges what reasonable values of a key unknown parameter would 
support the selection of a preferred regulatory alternative. Scenario analysis can be used 
to address different types of uncertainty quantitively, such as uncertainty regarding key 
parameters or model selection. Analysts present results for a defined number of 
defensible scenarios, not the entire range of possible combinations. In contrast, decision 
trees and Monte Carlo simulation are useful tools for including the entire range of 
possible probabilistic outcomes. Finally, we discuss sensitivity analysis last, not because 
it is the most sophisticated tool, but because it is valuable for all the previously discussed 
tools.  

4.1 BREAK-EVEN ANALYSIS   

A break-even analysis can be used when key uncertainties are too difficult to quantify. A 
break-even analysis answers the question, “How small could the value of the non-
quantified benefits be (or how large would the value of the non-quantified costs need to 
be) before the rule would yield zero net benefits?” (OMB 2003). For example, imagine 
that an agency is considering a regulation intended to reduce cases of food poisoning, but 
information quantifying the likely effectiveness of the proposed intervention, in terms of 
avoided cases, is unavailable. Without this information, an analyst cannot estimate the net 
benefits of the proposed rule. However, if the analyst can estimate the cost of the policy 
and the willingness to pay (WTP) to avoid a case of illness, then a break-even analysis 
will determine the number of cases that would need to be avoided for benefits to equal 
costs (i.e., for net benefits to equal zero). A break-even analysis is most effective when 
there is only one missing value in the analysis.  

For example, Thrift and von Winterfeldt (2021) document a U.S. Department of 
Homeland Security (DHS) study that examines the benefits and costs of investments in an 
advanced personal protection system (APPS) for wildland firefighters. In this analysis 
two key uncertain parameters are the reduction of injury and fatality risks due to use of 
APPS and the market penetration rate of the subject technology. Using break-even 
analysis, they identify that the break-even point (net benefits = $0) is reached when the 
reduction of fatality and injury risks is about 3.42 percent or when the market penetration 
rate is 0.18 percent, which corresponds to the sale of 985 APPD garments. The authors 
believe that these break-even values are at the very low-end of plausible estimates and 
thus, the break-even analysis suggests that there is a high likelihood of a positive net 
benefits for the APPS. 
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Advantages  

Analysis tends to be simple to calculate and easy to interpret. 

L imi tat ions  

Break-even analysis only examines one variable or factor at a time and may require 
significant assumptions regarding other variables or factors that could be explored with a 
more complex analysis tool. Additionally, it does not provide a quantitative estimate of 
the benefits or costs of a proposed regulation. 

4.2 SCENARIO ANALYSIS   

Scenario analysis, also referred to in the literature as “scenario planning,” is a disciplined 
method for imagining possible futures (Schoemaker 1995). The goal is to simplify 
situations with large amounts of data and uncertainty into a limited number of possible 
states, where each scenario describes how elements interact under certain conditions. 
Scenario analysis organizes the range of uncertainties into narratives that are easier to 
understand than large volumes of data. Examples of uncertain aspects of the future are 
rates of innovation (high versus low) or sales growth (positive versus negative). 

Scenario analysis will not try to depict all possible outcomes of each uncertainty. The 
purpose is not to cover all possibilities but to circumscribe them (high, medium, and low). 
The focus is not on forecasting the future or fully characterizing all future uncertainties, 
but on bounding uncertainty (Schoemaker 1991), generally looking at best and worst 
cases of uncertainties.  

Scenario analysis may be particularly useful in situations where potential outcomes 
require different types of models. For example, in response to a regulation, regulated 
entities may decide to incur compliance costs and continue producing their product in the 
United States, or they may decide to move production to another country. Estimating the 
costs of each scenario requires a fundamentally different model. Trends or issues 
combined with uncertainties are the key components of scenarios. 

The essential steps a scenario analysis include:  

1. Define the general scope of the analysis including the time frame and key issues 
that will contribute to the uncertainties;  

2. Identify the key uncertainties and the relationships among uncertainties since not 
all combinations may occur; 

3. Construct initial scenario themes – some example scenarios may be the extreme 
worlds where all positive or all negative elements occur together. Other scenarios 
may focus on the most important scenarios; 

4. Check for consistency and plausibility – for example, do the scenarios combine 
outcomes of uncertainties that are plausible? Generally two to four scenarios are 
sufficient (Schoemaker 1991); and 
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5. Name the scenarios. A scenario is a story. Make sure the scenarios describe 
different futures rather than variations on one theme. 

For example, during the crafting of the 2012 proposed rule designating critical habitat for 
the northern spotted owl pursuant to the Endangered Species Act, stakeholders expressed 
considerable disagreement about how the regulation would be implemented in the future. 
Based on considerable research and extensive interviews, the U.S. Fish and Wildlife 
Service (USFWS) decided to model three different plausible scenarios in its RIA, 
including: (1) a scenario resulting only in minor administrative costs and negligible 
benefits; (2) a scenario where timber harvests on Federal land increase, resulting in minor 
costs and significant quantifiable benefits; and (3) a third scenario resulting in significant 
costs in terms of forgone timber harvests and uncertain, non-quantified benefits (IEc 
2012). The results of all three scenarios are given equal weight in the RIA in terms of 
presentation, allowing the decision-maker to use his judgment about the most likely 
outcome when deciding on the configuration of the final rule. 

In a second example, the EPA sought to regulate the management of hazardous waste 
pharmaceuticals at healthcare facilities pursuant to the Resource Conservation and 
Recovery Act. Incremental costs and benefits of a proposed regulation are measured 
relative to a baseline scenario (i.e., the world without the regulation). Due to significant 
uncertainty about baseline waste disposal practices, and the sensitivity of the results of 
assumptions about these practices, EPA modeled two different baseline scenarios: (1) it 
assumed full compliance with existing RCRA regulations, and (2) it assumed partial 
compliance with existing regulations (EPA 2015). The partial compliance baseline 
reflects the likelihood that many facilities may not manage their hazardous waste 
pharmaceuticals in a manner consistent with existing requirements. In this case, the full 
compliance scenario is presented in the report’s executive summary, and the alternative 
baseline scenario is presented to demonstrate the sensitivity of the impact estimates to 
assumptions about baseline conditions. 

Advantages  

Scenarios can provide a sound conceptual framework for the analysis. Depending on the 
level of detail required in the analysis, scenario analysis may be combined with other 
tools (including decision trees and Monte Carlo simulation). Scenario analysis provides a 
good structuring tool and a good communications tool. 

L imi tat ions  

The goal of a scenario analysis is not to consider all combinations of all uncertainties. 
Without careful consideration and articulation, critical scenarios or uncertainties could be 
missing. 

If one of the scenarios is intended to be a “bounding” scenario, care must be taken to 
understand exactly what that scenario represents because it is often possible to imagine 
worse possible scenarios. Additionally, upper and lower bounds need to be plausible to be 
helpful to support the decision, so a truly worst-case scenario, if it is extremely unlikely, 
may be a distraction. If a bounding scenario is used and justified as a conservative 
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estimate of an effect, the analysts must be careful in the remaining analysis not to ignore 
unmeasured qualitative effects that were not captured. Finally, care must be taken when 
reporting bounding scenarios so that a decision-maker does not misinterpret the resulting 
range of estimates as corresponding to the 95th and 5th confidence bounds recommended 
in Circular A-4. As shown in Monte Carlo Simulations, combining 95th percentiles for 
multiple distributions does not provide an estimate of the 95th percentile for the 
combination of uncertain variables. In general, scenario analyses provide policymakers 
with a range of possible outcomes, but without a clear estimate of the likelihood of these 
outcomes. 

4.3 EVENT TREES, PROBABILITY TREES,  AND DECIS ION TREES 

A tree diagram is a handy visual tool that can be used to represent probabilities for both 
dependent and independent uncertain events. Each path through the tree represents a 
possible scenario of the outcomes of the various events logically sequenced in time. The 
probability of the outcomes of the different scenarios defined by the tree are determined 
by multiplying the probability values of the connected branches for each path. 

Whether a tree diagram is technically a decision tree, an event tree, or a probability tree 
depends on the characteristics of the nodes in the tree. Decision trees include decisions as 
well as chance nodes (probabilistic events). Decision trees are particularly useful to 
understand scenarios over time when there are ‘downstream’ decisions or options 
available to the decision-maker once some uncertain events have been resolved.  

The expected value of a decision tree is calculated by starting at the right end and 
working backwards to the base. At each uncertainty node, the expected value of its 
branches is found, and at each decision node, the branch that maximizes/minimizes the 
expected value/expected cost is chosen. Using this approach, the best decisions and their 
expected values are found (Clemen 1996).  

Event trees were primarily developed in the nuclear power industry to identify accident 
sequences or failure paths, so all the nodes in an event tree are chance nodes with binary 
outcomes of success or failure for each event (USNRC 1975, 1983). A probability tree is 
a similar, but more general, tool than an event tree. In a probability tree, event nodes can 
have more than binary success/failure branches.   

All three types of tree diagrams are generally constructed using deductive logic, starting 
with an initiating decision or event, and then considering the occurrence or non-
occurrence of other possible events. The probabilities associated with each additional 
event (or node) are conditional on all previous outcomes in the tree. Most people refer to 
the different variations of trees as decision trees even if there are no decisions (Leach 
2006). 

For example, Exhibit 2 provides a probability tree describing the sequence of 
uncertainties that are important when considering the potential beneficial outcomes of 
changes to mammogram reporting recommendations (based on FDA 2019a). The 
reporting requirement would provide more information about the density of the breast in 
the mammogram. If the image shows high density, a certain portion of these patients 
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would be advised for follow-on ultrasound screening. A significant uncertainty is whether 
the patient follows the advice because benefits are realized only if the patient seeks 
treatment following screening and additional cancer cases are detected. Again, the 
probabilities of each of the branches is the product of the probabilities at each node 
moving from left to right. To illustrate, working from left to right along the top branch, 
the probability that an image shows high breast density, the patient is advised to undergo 
additional ultrasound screening, the patient follows the advice, and additional cancer is 
detected is 0.0116 percent (0.42 * 0.40 * 0.164 * 0.0042 = 0.000116).  

In a second example, Exhibit 3 provides a tree used to explain the three levels of review 
in the preliminary RIA for the Premarket Tobacco Product Applications and 
Recordkeeping Requirements (US FDA, 2019b). This tree was not used to demonstrate 
dependencies among uncertain values like Exhibit 2, but instead to demonstrate uncertain 
paths through the review process. As shown in the exhibit, at each level of review, the 
agency determines if the applicant provided sufficient detail to proceed to the next level 
of review. To estimate the cost of time spent on application reviews, the number of 
applicants screened out at each level is an important variable. Using the tree structure to 
explain the process provides clarity and insight into the uncertainty associated with the 
time and cost variables.  

Advantages   

• Analysts can concentrate upon one specific scenario at a time. 

• Results provide a graphic that lays out the key uncertainties in the model. 

• Trees can capture complex dependent temporal events or conditional probabilities. 

• An exhibit with a decision tree provides clear insight into the interplay between 
uncertainties and decisions if decisions are included. 

L imi tat ions  

• A few decision nodes can quickly make trees large and complex. 

• Trees are best when key uncertainty parameters are characterized by discrete 
values, such as the event happens or it does not, or the outcomes result in discrete 
levels such as low, medium and high values. Uncertainties that are continuous 
probability distributions would need to be discretized to be displayed in a decision 
tree. 
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EXHIBIT 2.   EXAMPLE DECIS ION TREE EVALUATING REVISED MAMMOGRAM REPORTING RECOMMENDATIONS 

 
 
Source: Created for this white paper based on FDA (2019a). 
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EXHIBIT 3.   EXAMPLE EVENT TREE FOR REVIEW OF PREMARKET TOBACCO PRODUCTS 

Source: FDA (2019b) 

4.4 MONTE CARLO S IMULATION 

In Monte Carlo simulation, key inputs in a model are identified in terms of a probability 
distribution, rather than a point estimate. The computer draws a value for each input 
based on the distributions and calculates the output metrics of interest. The simulation 
repeats the process a defined number of times, selecting new values for each input, 
running through the calculations, producing new values for each output, and storing those 
values. Generally, analysts set the simulation to repeat at least a few hundred times; 
several thousand iterations are more common. Upon completion of the runs, the 
simulation calculates statistics based on the simulated output values. With the simulation 
drawing input values at random from the specified probability distributions, and by 
performing a statistically significant number of trials, the results then show the 
probability of achieving a certain threshold for the output metrics. The computer “plays 
the game” enough number of times to develop a good idea of the distribution of possible 
results. 
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Monte Carlo simulation has been used since at least the 1950s and specialized programs 
for performing complex simulations that integrate with spreadsheet models are available 
(e.g., Crystal Ball and @Risk). Statistical packages such as STATA have the capability 
for Monte Carlo simulations, and there is a Monte Carlo package for the R language that 
provides tools to create simulations quickly and easily. 

Steps (within the existing cost or benefit model) include:  

1. Define probability distributions for key input values; 

2. Define the output variables; 

3. Sample input values; 

4. Collect statistics on output values based on the random inputs; and 

5. Repeat the simulation N number of times and calculate statistics for output 
values. 

While formulas exist to calculate the exact number of iterations to run based on the 
output parameter of interest, the standard deviation of the output values, and the percent 
confidence interval desired for the parameter, generally the simulation needs to be run 
enough times to achieve output distributions that approach smooth, continuous 
distributions (i.e., “not lumpy”). Additionally, if an analyst is interested in the 50th 
percentile of an output distribution, this value will reach a stable value far quicker than 
percentiles towards the tails (i.e., the 90th percentile of a distribution). If the tails of the 
output distribution are of concern, more iterations will be needed. Ideally, the simulations 
are ended when outputs converge to a pre-specified threshold or criteria (e.g., the mean of 
the cost estimate does not change with additional runs by more than a predetermined 
percentage).  

A review of several recent RIAs produced by Federal agencies suggests analysts 
commonly employ 10,000 simulations. For example, in the 2017 Soy Relabeling RIA 
(US FDA 2017), analysts set the Monte Carlo simulation calculations estimating product 
relabeling costs to repeat 10,000 times. FDA used a similar number of iterations in the 
2019 Premarket Tobacco Application and Recordkeeping Requirements Analysis (US 
FDA 2019b).  

For a discussion of the types of probability distributions commonly used in Monte Carlo 
simulation, and when each may be most applicable, see Appendix A. For a demonstration 
of the use of several different distributions in a Monte Carlo simulation, and the 
implications of these different choices on the modeling results, see Appendix B. 

Another challenge for analysts is to document and convey the details of a Monte Carlo 
simulation at a level that is understandable and explains the important assumptions 
without onerous specifics and technical details. The U.S. Department of Transportation’s 
(DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA) used Monte 
Carlo analysis in its Final Regulatory Impact Analysis for Enhanced Rail Cars for High-
Hazard Flammable Trains (PHMSA, 2015). Exhibits 4, 5, and 6 provide examples of 
helpful tables from this study documenting the details of the Monte Carlo simulation. 
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Exhibit 4 provides the details of the Input Distributions used in the simulation. Exhibit 5 
shows an example of the outputs of the model, and Exhibit 6 describes the output 
distribution, in this case, the total estimated damages from higher-consequence events 
over 20 years. 

EXHIBIT 4.  INPUTS IN PHMSA’S  MONTE CARLO ANALYSIS  OF L IKELY BENEFITS (PHMSA 2015) 
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EXHIBIT 5.  PHMSA MONTE CARLO ANALYSIS  SAMPLE OUTPUTS (PHMSA 2015) 
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EXHIBIT 6.  PHMSA MONTE CARLO ANALYSIS  RESULTS (PHMSA 2015) 

 

A final recommendation for developing a correct Monte Carlo simulation is to conduct all 
analysis within a common Monte Carlo “shell” that samples from the same set of 
uncertain performance parameters, propagates them through the suite of analyses, and 
collects the resulting performance measures as a vector of performance measure values. 
As the Monte Carlo shell iterates, these performance measure vectors accumulate in 
accordance with the probability distributions that are defined over the set of performance 
measures. In some cases, when separate Monte Carlo simulations are used, using the 
results of one simulation in the next can overstate the uncertainty of the effect of the rule, 
and these figures would carry through into cost and benefit estimates, again overstating 
the uncertainty. 

Advantages   

• Monte Carlo simulations can be a very flexible modeling tool that can 
accommodate many varying parameters and thus model a range of possible 
outcomes. 

• They are relatively simple and intuitive. 

• They can provide a quantified range of outcomes for situations with significant 
uncertainty.  
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L imi tat ions  

• The results are only as good as the model’s inputs and assumptions, so analysts 
need to worry about the concept of “garbage in-garbage out.” In other words, the 
results of an analysis are only good as the quality of the data and assumptions that 
go into the model. This limitation is best mitigated with clear details of the inputs 
and outputs as demonstrated in Exhibits 4 through 6. 

• Relatedly, a simulation analysis may provide a false sense of rigor. 

• It is not always obvious how many trials are needed for the simulation to 
converge, and it may require many computations to approximate a solution. 

4.5 SENSITIVITY ANALYSIS  

Sensitivity analysis can be helpful in determining which variables in an analysis are key 
sources of uncertainty. Sensitivity analysis performs best when it primarily focuses on 
one or a few variables at a time, keeping the remaining values constant. 

Sensitivity analysis tries to answer the question: “what makes a difference in this 
decision?” (Clemen 1996) A well done sensitivity analysis helps analysts confirm that 
they are solving the right problem and focusing on the most important uncertainties 
impacting the analysis. Identifying the most important uncertainties is critical information 
to provide to decision-makers.  

A one-way sensitivity analysis is the most common approach for determining which 
variables have the biggest impact on the results of an analysis. Analysts insert different 
values for a single variable, re-running the model to calculate the results associated with 
each assumption. All other variables remain unchanged, so the analyst can clearly see the 
impact of the variable in question. This type of sensitivity analysis can be accomplished 
using simple spreadsheet tools or Monte Carlo simulation tools (see Section 4.4). 

Where several variables are uncertain, analysts might also conduct a sensitivity analysis 
that considers different possible values for these variables simultaneously. This type of 
sensitivity analysis is most frequently accomplished using Monte Carlo simulation tools. 
A common way of displaying output that considers the sensitivity of a result to more than 
one variable is with a “tornado diagram” (Clemen 1996, Leach 2006).  

An example of a tornado diagram is provided in Exhibit 7. This example is from Thrift 
and von Winterfeldt (2021)’s study examining the benefits and costs of DHS’s 
investments in APPS for wildland firefighters. The goal of the APPS was to reduce risk 
and improve comfort for the wildland firefighter. The analysis estimated that the expected 
net benefits of the investment in terms of reduced fatalities and injuries would be $13.6 
million (present value in 2019 dollars). However, as can be seen in Exhibit 7, the  
estimate of the expected value, depicted in this figure as a vertical line, was highly 
sensitive to several model parameters. The sensitivity analysis showed that net benefits 
could range from a 5th percentile estimate of $6.4 million to a 95th percentile of $43.7 
million. The tornado diagram in Exhibit 7 shows the large range was due principally to 
the uncertainty about the reduction of fatality and injury risks, which analysts estimate 
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could range from 5 percent to 20 percent of baseline risk, and the market penetration rates 
of the new garments, potentially ranging from 3 percent to 10 percent of the market. 
Given the importance of these two parameters, the authors provide additional information 
for decision-makers about the break-even values for each parameter and the plausibility 
of achieving these values. 

EXHIBIT 7.  EXAMPLE TORNADO DIAGRAM (THRIFT AND VON WINTERFELDT,  2021) 

 

Advantages   

• Identifying the critical variables in a sensitivity analysis helps analysts focus on 
the aspects of the model that matter (i.e., can change the recommendation). This 
information allows the decision-makers to focus on the plausibility of key 
assumptions. 

• Analysts can examine the critical variables identified in the sensitivity analysis to 
determine if there is value in collecting more information about these variables. 
While the stylized value of information calculation described in Section 6 in many 
cases may not be possible, the process of considering both the costs of collecting 
the information and the benefits to the analysis in terms of potential changes for 
decision-making can provide important insights that may or may not justify 
additional information collection.  

L imi tat ions  

• No optimal sensitivity analysis exists and to some extent determining the best 
sensitivity analysis is an art. For example, conducting sensitivity analysis of too 
many variables with similar effects on outputs may overwhelm or confuse 
decision-makers. 

• Tornado diagrams are easiest to create and understand if variables are examined 
one at a time holding others constant, but this approach needs to be carefully 
implemented if variables are correlated. In cases where correlated variables make 
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the results of the one-way sensitivity analysis non-sensical, consider grouping 
correlated variables in a single bar.  

5.0 UNCERTAINTY ELICITATION AND THE ROLE OF SUBJECT MATTER EXPERTS 

Section 4.0 focuses on tools used to (1) identify key uncertainties in models estimating 
the benefits and costs of proposed regulations and (2) quantify uncertainty associated 
with model results. In this section, we explain how expert judgment can be used to fill 
data gaps and better characterize uncertainty associated with key parameters. In some 
cases, such judgment may be needed when a systematic review of the empirical literature 
finds that the available research is of poor quality or addresses situations that differ in 
important ways from the context addressed by the policy. In other cases, the review may 
find that the value needed by analysts has not been previously studied. In either situation, 
parameter estimates may be necessary to meet the requirements for conducting regulatory 
analysis. 

Approaches for soliciting information from experts range from unstructured interviews to 
formal, structured expert elicitation, with semi-structured interviews, focus groups, expert 
panel meetings, and other approaches falling in between. More sophisticated approaches 
are likely to improve the validity of the estimates, but require more time and resources. 
At one extreme, informal phone interviews are relatively quick and inexpensive, but the 
resulting data may be less reliable. At the other extreme, formal structured expert 
elicitation could require significant time and effort to implement if the assessment task is 
complex. 

There is no single, best approach for obtaining expert judgments. Rather, various 
approaches might be characterized as occurring on a continuum, with unstructured 
interviews being the most informal approach and formal, structured expert elicitation 
representing the opposite end of the spectrum. The criteria used to select the best 
approach for a given analysis include what is at stake with the rulemaking, as well as the 
amount and quality of data and resources available. 

In the remainder of this section, our discussion focuses on best practices for conducting 
formal, structured elicitation.9 Structured expert elicitation differs from less formal 
approaches in that it follows a systematic framework for obtaining experts’ judgments 
about the value of a clearly defined source of uncertainty, where each expert is asked to 
provide a probability distribution (or more likely key parameters that can be fit to a 
probability distribution) characterizing his or her beliefs about the uncertainty. The types 
of issues considered in each step of such an elicitation can also inform the design and 
conduct of other elicitation approaches.  

The literature describing best practices for eliciting expert judgments, including relevant 
choices and methods, along with their strengths and weaknesses, is extensive. 
Furthermore, consensus on key points, such as whether and how to combine judgments 

 
9
 For a discussion of less formal approaches, such as semi-structured interviews and focus groups, see Newcomer et al. 

(2015). 
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from different experts, does not exist. Useful general references on structured expert 
elicitation include: 

• Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy 
Analysis (Morgan and Henrion 1990); 

• Uncertain Judgements: Eliciting Experts’ Probabilities (O’Hagan et al. 2006); 

• Making Hard Decisions: An Introduction to Decision Analysis (2nd ed.) (Clemen 
1996); and 

• Expert Elicitation Task Force White Paper (U.S. Environmental Protection 
Agency 2009).10 

The general steps followed in a structured expert elicitation include: 

1. Develop background information and prepare for the elicitation. This step 
includes identifying and clearly defining the variables for which expert judgment 
is needed; choosing the elicitation method; identifying the staffing needs; 
developing the elicitation protocol, and preparing a briefing book for the experts. 

2. Identify and Recruit experts. This steps involves determining the number and 
type of experts required for the elicitation, and choosing and implementing a 
methodology for identifying and selecting experts. 

3. Conduct the elicitation. In this step, analysts motivate and train the experts to 
provide judgments in terms of probability distributions and to avoid cognitive 
biases. Then, they conduct the elicitation. 

4. Report the results. Analysts report judgments provided by each expert and make 
decisions and whether and how to combine estimates across experts. 

5. Document and verify the process. Finally, analysts keep detailed records of the 
development and implementation of the elicitation and might consider 
conducting a peer review of the elicitation process. 

In Appendix C, we provide additional detail regarding key considerations in each step. 

The EPA’s Second Section 812 Benefit-Cost Analysis of the Clean Air Act provides an 
example of the use of expert elicitation in an assessment of the costs and benefits of a 
series of Federal regulations.11 The relationship between decreases in fine particulate 
matter (PM2.5) and reductions in mortality was a key source of uncertainty in EPA’s 
estimation of the benefits of the Act. The agency elicited distributions from 12 of the 
world’s leading experts on this relationship. The results of the elicitation are shown in 

 
 
10

 Additionally, the Nuclear Regulatory Commission (NRC), the U.S. Department of Energy, and the Electric Power Research 

Institute sponsored a study to develop recommendations for conducting expert assessments in the context of natural 

hazards. The resulting Senior Seismic Hazard Analysis Committee (SSHAC) process is described in NRC (1997) and NRC 

(2012), and updated in NRC (2016).  

11
 See EPA (2011) for an overview of the benefit-cost analysis, IEc (2011) for a detailed discussion of the uncertainty analyses 

supporting the Second Section 812 Benefit-Cost Analysis, and Roman et al. (2008) for the peer-reviewed publication of the 

expert elicitation. 
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Exhibit 8. Each expert provided minimum, 5th, 25th 50th, 75th, 95th and maximum effect 
estimate, as shown in the box and whisker plots. The agency used to the results of the 
elicitation to inform the selection of a primary concentration-response function to 
estimate avoided premature mortality (the benefits) of reductions in exposure to PM2.5, 
and in its quantitative uncertainty analysis.  
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EXHIBIT 8.  UNCERTAINTY DISTRIBTUTIONS FOR THE PM2 . 5  MORTALITY CONCENTRATION-RESPONSE COEFFICIENT PROVIDED BY 

EXPERTS (ROMAN ET AL 2008) 
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6.0 VALUE OF INFORMATION CALCULATIONS 

When substantial uncertainty exists for a variable in a model, sometimes better 
information about the variable could increase one’s understanding of the net benefits of 
the regulation. There is always a trade-off between a timely, cost-effective analysis and 
the inclination to continue to acquire better information to support decision-making. The 
challenge becomes identifying when investments in information collection are warranted 
because the benefits to the improvement of the analysis exceed the costs of the additional 
data collection. 

In the context of a regulatory decision, it is helpful to understand how much benefit can 
be derived from the collection of additional data (e.g., exposure data) that will help 
elucidate the consequences associated with alternative regulatory policies. The value of 
information is calculated as the expected monetary difference between the estimate of the 
net social benefits of the regulation both with and without the additional information on 
the uncertainty (in this example, exposure data).  

Further information is most likely to be valuable and worth additional collection when 
considerable uncertainty exists and uncertainty about the variable of interest could lead to 
different regulatory choices. For example, if there are high costs associated with a 
proposed rule and enormous uncertainty about the true impacts for society, then 
improving one’s understanding of the uncertainties is often justifiable based on a value of 
information calculation. 

It is common to depict a value of information calculation with a decision tree where the 
collection of information reverses the order of decision and chance nodes. Exhibit 9 
replicates a stylized value of information calculation described in work for Health Canada 
(Leighty et al., 2000). In this example, there are three policy options: (1) take no further 
regulatory action (top branch), (2) institute specific pollution control measures based on 
the current information (middle branch), and (3) acquire additional information, which in 
this case is a database of human exposures to a particular toxin prior to deciding whether 
to adopt control measures (bottom branch).  

The uncertainty is the current level of human exposure to a particular toxin and is shown 
with three possible outcomes: high, medium, and low. To evaluate the decision tree, 
probabilities must be assigned to each of the exposure states and payoffs must be 
estimated for each scenario or path through the tree at the endpoints. The value of 
information in this example estimates how valuable collecting this national database of 
exposures would be. If the database were collected, then the decision-makers could 
understand the likely exposures before they needed to make the control decisions.  

More complex analyses may consider the value of collecting information to reduce 
uncertainty in one component of a decision that involves many uncertain steps (i.e., the 
value of partial information). In this example, the value of implementing no controls is 
just the status quo, no net social benefits. In the control branch, there is uncertainty about 
the exposure distribution; if exposure is high, there are significant positive net social 
benefits. If exposure is low, the cost of the controls generates negative net social benefits, 
and if exposure is medium, there are net positive social benefits, but they are less than in 
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the high condition. In this example, the probability of high, medium, and low exposure 
existing are equally likely. Creating an exposure database means knowing the exposure 
(high, medium, and low) before making the control decision and only choosing to 
implement the controls if the exposure is high or medium. Comparing the expected value 
of the middle branch to the bottom branch has an expected value of information of $16.7 
units, which is greater than $0 and probably justifies the collection of the exposure 
information. 

The approach used to collect more information to reduce uncertainty will vary depending 
on the data gaps. Analysts might undertake statistical analysis of existing datasets or 
spend additional time developing a broader literature review. As discussed in Section 5, 
subject matter experts can offer professional judgement to characterize the likely impacts, 
but this approach requires time and other resources. In some cases, conducting a well-
designed survey can resolve uncertainty over respondents’ preferences. An agency could 
also initiate a pilot study of a regulatory approach under consideration as an initial step 
before considering broader action. When considering the value of collecting this 
information in regulatory decision-making, it is appropriate to balance the potential 
benefits of reductions in uncertainty in the analysis with the costs of the collection, 
including expenditures to acquire data or to field a survey, as well as the effect of 
delaying regulatory action. 

To learn more about VOI analysis, see the following references: 

• Decision Analysis: Introductory Lectures on Choices Under Uncertainty (Raiffa 
1968); and 

• Making Hard Decisions: An Introduction to Decision Analysis (2nd ed.) (Clemen 
1996). 
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EXHIBIT 9.  FRAMEWORK FOR VALUE OF INFORMATION: DECIS ION TREE 

 
Source: Leighty et al. (2000). 
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7.0 COMMUNICATION OF UNCERTAINTY 

Clear, concise communication of uncertainty is critical for decision-making. At a 
minimum, every RIA should include a qualitative discussion of any significant sources of 
uncertainty. Depending on the stakes of a regulation (see Section 3.0), quantitative 
uncertainty analysis may also be warranted or necessary. Below, we provide examples 
from actual RIAs illustrating the communication of all of the types of analyses discussed 
in this white paper. 

7.1 QUALITATIVE PRESENTATION OF UNCERTAINTY 

Quantification of uncertainty is desired because it provides a clear indication of the likely 
direction and magnitude of impacts. However, if quantification is not possible, analysts 
must determine how to convey the uncertainty qualitatively. Additionally, they need to 
consider how to address potentially important non-quantified effects. Ignoring such 
effects may lead to poor decisions; but overemphasizing minor sources of uncertainty 
may also negatively impact decision-making. Clear presentation of uncertainty is needed 
to ensure potential sources of bias or uncertainty are appropriated weighted and 
considered. 

At a minimum, every RIA should include a qualitative discussion of key sources of 
uncertainty and their potential influence on the results of the analysis. This discussion can 
be included in sections titled, “Limitations and Key Sources of Uncertainty” at the end of 
each chapter in an RIA, in a separate appendix, or both. Because RIAs often rely on 
dozens of assumptions and values, listing all of the uncertainties can be overwhelming. 
To assist decision-makers and the public, analysts should use tools, like tables and 
graphics, to highlight important effects, to ensure they are not overlooked. These tools 
should also help decision-makers understand which uncertainties are less likely to 
materially affect the results. 

There are many ways to convey this information. Below, in Exhibit 10, we list several 
examples of benefit-cost analyses of Federal regulations providing high-quality 
discussions of uncertainty or illustrating useful approaches to addressing uncertainty that 
can be adopted for other analyses. For each example, we provide hyperlinks to the 
documents, which are all publicly-available via the internet, and a description of why we 
included them in this discussion.12 This list is not exhaustive; there are hundreds of RIAs 
providing additional, excellent examples. 

In summary, best practices for a qualitative discussion of uncertainty include: 

 
12

 In some cases, a single document provides multiple examples of the presentation of uncertainty that are relevant to this 

white paper. In the exhibit, we attempt to highlight a range of different presentation techniques, and therefore generally 

focus on one to two examples in each document. In each case, we encourage readers to skim the entire document to see 

additional relevant examples of ways to present both quantified and non-quantified uncertainty. 
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• Clearly discuss key assumptions, uncertainties, and data limitations and make 
sure this discussion appears along with the presentation of the primary estimates 
of benefits and costs;  

• Describe whether the assumptions could lead to overstating or understating 
benefits or costs and the likely direction of the potential bias; 

• Discuss the potential magnitude of each assumption’s impact on the analysis’ 
estimates (e.g., whether it is major or minor); and 

• Wherever possible, use a presentation format (e.g., colors or graphics) that helps 
readers easily comprehend the overall takeaway message on uncertainty. 
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EXHIBIT 10. EXAMPLES OF QUALITATIVE PRESENTATION OF UNCERTAINTY 

TITLE/HYPERLINK AGENCY SECTION(S) RELEVANCE 

The Benefits and Costs of the Clean Air Act 
from 1990 to 2020: Final Report – Rev. A  
(EPA 2011) 

EPA 

Uncertainty 
discussion at 
the end of 
each chapter 

This report to Congress estimates the costs and benefits of the 
regulations promulgated under the Clean Air Act. Each chapter presents 
a step in the overall analysis. At the end of each chapter, EPA provides 
a table listing key uncertainties associated with the analysis presented 
in that section. For each uncertainty, it discusses the potential direction 
of bias on the results and the relative significance of the uncertainty. 
Importantly, EPA’s Science Advisory Board (SAB) provided substantial 
advice during the development of this report, and EPA’s presentation of 
uncertainty was well-received by the expert reviewers. 

Regulatory Impact Analysis: Mandatory Advance 
Electronic Data (AED) for International Postal 
Shipment Interim Final Rule  
(IEc 2021) 

CBP Appendix B 

This interim final rule is intended to lessen the flow of illegal opioids 
into the United States. The report includes a comprehensive discussion 
of uncertainty in a separate appendix. The analysts add color to help 
draw out key conclusions regarding the relative importance of various 
sources of uncertainty.1 

Food Labeling; Gluten-Free Labeling of 
Fermented or Hydrolyzed Foods Regulatory 
Impact Analysis (Final Rule) 
(FDA undated) 

FDA Table 1 

Circular A-4 (OMB 2003) requires agencies to provide an accounting 
statement in its RIAs summarizing monetized, quantified, and 
qualitative categories of costs and benefits. In this example, FDA 
integrates the presentation of its qualitative results (including the 
results of a break-even analysis) with its quantitative estimates.2 

36 CFR 51 Concessions Contracts Revisions: 
Regulatory Impact Analysis and Initial 
Regulatory Flexibility Analysis 
(IEc 2020) 

NPS Exhibits 4-1 
and 4-1 

This proposed rule is intended to improve the way NPS solicits, 
evaluates, and administers contracts with firms providing services to 
visitors within National Park System units. Significant uncertainty exists 
about how concessioners are likely to respond to the proposed changes. 
The analysts use decision trees to map the possible outcomes and 
provide qualitative descriptions of the potential positive and negative 
consequences of each scenario. 

Notes: 
1. This appendix also includes quantitative sensitivity analysis addressing two key sources of uncertainty highlighted in the qualitative discussion. 
2. This report quantifies the primary benefits of the proposed rule and uses break-even analysis to characterize other, non-quantified benefits.  

  

https://www.epa.gov/sites/default/files/2015-07/documents/fullreport_rev_a.pdf
https://www.epa.gov/sites/default/files/2015-07/documents/fullreport_rev_a.pdf
https://www.regulations.gov/document/USCBP-2021-0009-0002
https://www.regulations.gov/document/USCBP-2021-0009-0002
https://www.regulations.gov/document/USCBP-2021-0009-0002
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-gluten-free-labeling-fermented-or-hydrolyzed-foods-regulatory-impact-analysis-final
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-gluten-free-labeling-fermented-or-hydrolyzed-foods-regulatory-impact-analysis-final
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-gluten-free-labeling-fermented-or-hydrolyzed-foods-regulatory-impact-analysis-final
https://www.regulations.gov/document/NPS-2020-0003-0006
https://www.regulations.gov/document/NPS-2020-0003-0006
https://www.regulations.gov/document/NPS-2020-0003-0006
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7.2 QUANTIFIED ESTIMATES OF UNCERTAINTY 

Ideally, analysts can characterize key sources of uncertainty quantitatively. In Exhibit 11, 
we provide examples of different ways to present the results of these types of analyses. 
This list is not exhaustive; readers are encouraged to look at other examples referenced 
throughout this white paper. 

In summary, best practices for a quantitative discussion of uncertainty include: 

• Clearly discuss key assumptions and uncertainties and analyze them (e.g., using 
sensitivity analysis) to determine which are likely to have the largest impact on 
the benefits or costs in the analysis;  

• Focus the quantitative analysis on the most important sources of uncertainty, 
rather than on the parameters for which distributions are readily available. Doing 
so will help to avoid misconceptions about the true range of confidence intervals 
around estimates of costs and benefits; 

• Choose the tool that will best characterize uncertainty. For example, model 
uncertainty may be better characterized using scenario analysis, while uncertainty 
associated with specific model parameters might be addressed using Monte Carlo 
simulations; 

• Clearly describe the modeling approach, including the rationale for the choice of 
probability distributions used in the modeling, the number of draws if a 
simulation is used, and any correlations among variables that are included; 

• If possible, quantify the statistical distribution of estimated impacts and provide 
key characteristics of the distribution including mean, median, standard 
deviation, variance, minimum, maximum, 5th percentile, and 95th percentile; and  

• Describe any data limitations, including key non-quantified costs and benefits, 
along with the presentation of quantitative results. 
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EXHIBIT 11. EXAMPLES OF QUANTITATIVE PRESENTATION OF UNCERTAINTY 

TITLE/HYPERLINK AGENCY SECTION(S) RELEVANCE 

Uncertainty Analyses to Support the Second 
Section 812 Benefit-Cost Analysis of the Clean 
Air Act 
(IEc 2011) 

EPA Entire report 

This report supplements the main analysis described in Exhibit 10. The 
EPA conducted nearly a dozen separate quantitative uncertainty 
analyses for key steps in its analysis of the costs and benefits of the 
Clean Air Act. The results of sensitivity and scenario analyses are 
primarily provided in tabular form; however, it also uses different types 
of charts to illustrate relative differences across scenarios. The agency 
also used expert elicitation and presents the experts judgments using 
box and whisker plots. Finally, it uses mapping tools to highlight 
differences in pollution levels across the United States in response to 
different scenarios.1  

Potential Public Health Effects of Reducing 
Nicotine Levels in Cigarettes in the United 
States 
(Apelberg et al. 2018) & 
How Could Lowering Nicotine Levels in 
Cigarettes Change the Future of Public Health? 
(FDA 2020) 

FDA 

Figure 1 in 
paper and 
figures on 
webpage 

FDA issued an Advanced Notice of Proposed Rulemaking (ANPRM) seeking 
comments on standards lowering the nicotine level in cigarettes. It cites 
a study it funded, published in the New England Journal of Medicine, 
that relied on statistical models and expert elicitation to estimate 
potential health impacts. The study and the website provide graphics 
illustrating analysts’ best estimates of various health improvements, 
with shading to indicate uncertainty bounds for each projection. 

Regulatory Assessment and Initial Regulatory 
Flexibility Analysis for the Interim Final Rule: 
Importer Security Filing and Additional Carrier 
Requirements 
(IEc 2008) 

CBP Appendix C 

CBP promulgated an interim final rule intended to help the agency 
identify high-risk ocean shipments to prevent smuggling and ensure 
cargo safety and security. Because the regulation had the potential to 
result in costs exceeding $1 billion in a single year, the agency 
performed probabilistic uncertainty analysis. The appendix includes 
exhibits describing the parameter values used in the Monte Carlo 
analysis, illustrating the results, and illustrating the sensitivity of the 
results to key assumptions. 

Technical Support Document: Technical 
Update of the Social Cost of Carbon for 
Regulatory Impact Analysis Under Executive 
Roder 12866 
(Interagency Working Group on Social Cost of 
Carbon, United States Government 2013) 

Interagency 
Working 
Group on 
the Social 
Cost of 
Carbon 

Entire 
document 

This Technical Support Document provides estimates of the social cost 
of carbon for use in U.S. regulatory analysis based on the output of 
three different integrated assessment models (IAMs) and three different 
discount rates. Each of the IAMs is subject to key assumptions and 
sources of uncertainty, as is the choice of discount rate. The 
presentation of recommended values, and how they should be used by 
analysts, is simple and clear. The document also provides a 
comprehensive discussion of assumptions and decisions made by the 
working group to develop these recommendations.  

Notes: 
1. This supplemental volume also includes the types of qualitative discussion of uncertainty discussed in Exhibit 10.  

  

https://www.epa.gov/sites/default/files/2016-01/documents/uncertaintyfullreport.pdf
https://www.epa.gov/sites/default/files/2016-01/documents/uncertaintyfullreport.pdf
https://www.epa.gov/sites/default/files/2016-01/documents/uncertaintyfullreport.pdf
https://www.nejm.org/doi/full/10.1056/NEJMsr1714617
https://www.nejm.org/doi/full/10.1056/NEJMsr1714617
https://www.nejm.org/doi/full/10.1056/NEJMsr1714617
https://www.fda.gov/tobacco-products/public-health-education/how-could-lowering-nicotine-levels-cigarettes-change-future-public-health
https://www.fda.gov/tobacco-products/public-health-education/how-could-lowering-nicotine-levels-cigarettes-change-future-public-health
https://www.regulations.gov/document/USCBP-2007-0077-0200
https://www.regulations.gov/document/USCBP-2007-0077-0200
https://www.regulations.gov/document/USCBP-2007-0077-0200
https://www.regulations.gov/document/USCBP-2007-0077-0200
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf


 

 
 
 

 
34 

8.0 REFERENCES 

Apelberg, B.J., S.P. Feirman, E. Salazar, C. G. Corey, B. K. Ambrose, A. Paredes, E. 
Richman, S. J. Verzi, E.D. Vugrin, N.S. Brodsky, and B.L. Ronstron. 2018. 
“Potential Public Health Effects of Reducing Nicotine Levels in Cigarettes in the 
United States.” New England Journal of Medicine. 378:1725-1733.  

Clemen, R.T. 1996. Making Hard Decisions: An Introduction to Decision Analysis (2nd 
ed.). Belmont, CA: Duxbury Press at Wadsworth Publishing Company. 

Clemen, R.T. and R.L. Winkler. 1999. “Combining Probability Distributions From 
Experts in Risk Analysis.” Risk Analysis. 19:187-203. 

Clinton, W.J. 1993. “Executive Order 12866: Regulatory Planning and Review.” Federal 
Register. 58(190):51735-51744. 
http://www.whitehouse.gov/omb/inforeg_regmatters  

Cooke, R.M. 1991. Experts in Uncertainty: Opinion and Subjective Probability in 
Science. New York, NY: Oxford University Press. 

Cooke, Roger M. and L.H.J. Goossens. 1999. Procedures Guide for Structured Expert 
Judgment. Prepared for the Commission of European Communities Directorate-
general XI (Environment and Nuclear Safety). 

European Food Safety Authority. 2014. “Guidance on Expert Knowledge Elicitation in 
Food and Feed Safety Risk Assessment.” EFSA Journal 12(6):3734. Available at 
http://www.efsa.europa.eu/en/efsajournal/pub/3734.htm 

Goodwin, P. and G. Wright. 2004. “Chapter 9: Biases in Probability Assessment.” 
Decision Analysis for Management Judgment (3rd Ed.). Chichester, England: John 
Wiley & Sons. 

Hammitt, J. 2011. Expert Judgment (Expert Elicitation). Presentation at Society of Risk 
Analysis Workshop “Synthesizing Evidence: An Introduction to Systematic 
Reviews, Meta-Analysis, and Expert Elicitation,” December 4, 2011. 

Hora, S. 2007. “Eliciting Probabilities From Experts.” In W. Edwards, R.F. Miles Jr., and 
D. von Winterfeldt (Eds.), Advances in Decision Analysis: From Foundations to 
Applications. New York, NY: Cambridge University Press. 

Hora, S., N. Dodd, and J. Hora. 1993. “The Use of Decomposition in Probability 
Assessments of Continuous Variables.” Journal of Behavioral Decision Making. 
6(2):133-147. 

Industrial Economics, Incorporated. 2021. Regulatory Impact Analysis: Mandatory 
Advance Electronic Data (AED) for International Postal Shipment Interim Final 
Rule. Final report prepared for U.S. Department of Homeland Security, U.S. 
Customs and Border Protection. February 24, 2021. Available at 
https://www.regulations.gov/document/USCBP-2021-0009-0002  

http://www.whitehouse.gov/omb/inforeg_regmatters
http://www.efsa.europa.eu/en/efsajournal/pub/3734.htm
https://www.regulations.gov/document/USCBP-2021-0009-0002


 

 
 
 

 
35 

Industrial Economics, Incorporated. 2020. 36 CFR 51 Concessions Contracts Revisions: 
Regulatory Impact Analysis (RIA) and Initial Regulatory Flexibility Analysis (IRFA). 
Draft report prepared for the National Park Service, Commercial Services Program. 
June 16, 2020. Available at https://www.regulations.gov/document/NPS-2020-0003-
0006  

Industrial Economics, Incorporated. 2012. Economic Analysis of Critical Habitat 
Designation for the Northern Spotted Owl. Draft Report prepared for the U.S. Fish 
and Wildlife Service. May 29, 2012. Available at 
https://www.regulations.gov/document/FWS-R1-ES-2011-0112-0031  

Industrial Economics, Incorporated. 2011. Uncertainty Analyses to Support the Second 
Section 812 Benefit-Cost Analysis of the Clean Air Act. Final report prepared for 
James DeMocker, Office of Air and Radiation, U.S. Environmental Protection 
Agency. March 2011. Available at https://www.epa.gov/sites/default/files/2016-
01/documents/uncertaintyfullreport.pdf  

Industrial Economics, Incorporated. 2008. Regulatory Assessment and Final Regulatory 
Flexibility Analysis for the Interim Final Rule: Importer Security Filing and 
Additional Carrier Requirements. Final report prepared for the U.S. Department of 
Homeland Security, U.S. Customs and Border Protection. November 6, 2008. 
Available at https://www.regulations.gov/document/USCBP-2007-0077-0200  

Interagency Working Group on Social Cost of Carbon, United States Government. 2013. 
Technical Support Document: Technical Update of the Social Cost of Carbon for 
Regulatory Impact Analysis Under Executive Order 12866. Revised November 
2013. Available at 
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technica
l-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf  

Knol, A.B., P. Slottje, J.P. van der Sluijs, and E. Lebret. 2010. “The Use of Expert 
Elicitation in Environmental Health Impact Assessment: A Seven Step Procedure.” 
Environmental Health. 9(19). 

Leach, P. 2006. Why Can’t You Just Give Me The Number? An Executive’s Guide to 
Using Probabilistic Thinking to Manage Risk and to Make Better Decisions.  
Probabilistic Publishing. 

Leighty, W., J. Neumann, H. Roman, E. Ruder, and T. Walker. 2000. “Value of 
Information Analyses,” Memorandum prepared by Industrial Economics, 
Incorporated for Health Canada. 

Makridakis, S., R. Hogarth, and A. Gaba. 2009. Dance with Chance. Oxford: One World 
Book. 

Morgan, M. G. 2014. “Use (and Abuse) of Expert Elicitation in Support of Decision 
Making for Public Policy. PNAS 111(20): 7176-7184.  

https://www.regulations.gov/document/NPS-2020-0003-0006
https://www.regulations.gov/document/NPS-2020-0003-0006
https://www.regulations.gov/document/FWS-R1-ES-2011-0112-0031
https://www.epa.gov/sites/default/files/2016-01/documents/uncertaintyfullreport.pdf
https://www.epa.gov/sites/default/files/2016-01/documents/uncertaintyfullreport.pdf
https://www.regulations.gov/document/USCBP-2007-0077-0200
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-of-carbon-for-regulator-impact-analysis.pdf


 

 
 
 

 
36 

Morgan, M.G. and M. Henrion. 1990. Uncertainty: A Guide to Dealing with Uncertainty 
in Quantitative Risk and Policy Analysis. Cambridge, UK: Cambridge University 
Press. 

Newcomer, K.E., H.P. Hatry, and J.S. Wholey. 2015. Handbook of Practical Program 
Evaluation (4th Ed.). San Francisco, CA: Jossey-Bass. 

O’Hagan, A., C.E. Buck, A. Daneshkhah, J. Eiser, P. Garthwaite, D. Jenkinson, J. 
Oakley, T. Rakow. 2006. Uncertain Judgements: Eliciting Experts’ Probabilities. 
Chichester, England: John Wiley & Sons Ltd. 

Obama, B. 2011. “Executive Order 13563: Improving Regulation and Regulatory 
Review.” Federal Register. 76(14):3821-3823. Available at 
http://www.whitehouse.gov/omb/inforeg_regmatters  

Paté-Cornell, M.E. 1996. “Uncertainties in risk analysis: Six levels of treatment.” 
Reliability Engineering and System Safety. 54:95-111. 

Raiffa, H. 1968. Decision Analysis – Introductory Lectures on Choices Under 
Uncertainty. Longman Higher Education Division (a Pearson Education Company). 

Roman, H.A., J.K. Hammitt, T.L. Walsh, and D.M. Stieb. 2012. “Expert Elicitation of the 
Value Per Statistical Life in an Air Pollution Context.” Risk Analysis. 32: 2133-
2151. 

Roman, H.A., K.D. Walker, T.L. Walsh, L. Conner, H.M. Richmond, B.J. Hubbell, and 
P.L. Kinney. 2008. “Expert Judgment Assessment of the Mortality Impact of 
Changes in Ambient Fine Particulate Matter in the U.S.” Environmental Science and 
Technology 42: 2268-2274. 

Schoemaker, P. J.H. 1995. "Scenario planning: a Tool for Strategic Thinking." Sloan 
Management Review. 36(2):25-40. 

Schoemaker, P. J.H. 1991. “When and How to Use Scenario Planning: a Heuristic 
Approach With Illustration” Journal of Forecasting. 10(6): 549-564. 

Tannenbaum, D, C. R. Fox, and G. Ülkümen. 2017. “Judgment Extremity and Accuracy 
Under Epistemic vs. Aleatory Uncertainty.” Management Science. 63(2):497-518.  

Thrift, S.M. and D. von Winterfeldt (2021) “Risk-Informed Benefit-Cost analysis for 
Homeland Security R&D: Methodology and an Application to Evaluating the 
Advanced Personal Protection System for Wildland Firefighters,” Journal of Benefit 
Cost Analysis 12(2):335-366. 

Tversky, A. and D. Kahneman. 1974. “Judgments Under Uncertainty: Heuristics and 
Biases.” Science. 185:1124-1131. 

U.S. Environmental Protection Agency. 2021. “Uncertainty and Variability”, EPA 
Expobox, Available at https://www.epa.gov/expobox/uncertainty-and-variability 

U.S. Environmental Protection Agency. 2015. Regulatory Impact Analysis of EPA’s 
Proposed Regulations for the Management of Hazardous Waste Pharmaceuticals at 

http://www.whitehouse.gov/omb/inforeg_regmatters


 

 
 
 

 
37 

Healthcare Facilities. June 2015. Available at 
https://www.regulations.gov/document/EPA-HQ-RCRA-2007-0932-0412  

U.S. Environmental Protection Agency. 2011. The Benefits and Costs of the Clean Air 
Act from 1990 to 2020: Final Report – Rev. A. Prepared by the Office of Air and 
Radiation. April 2011. Available at https://www.epa.gov/sites/default/files/2015-
07/documents/fullreport_rev_a.pdf  

U.S. Environmental Protection Agency. 2009. Expert Elicitation Task Force White 
Paper: External Review Draft. Prepared for the Science and Technology Policy 
Council. Available at 
http://yosemite.epa.gov/sab/sabproduct.nsf/fedrgstr_activites/Expert%20Elicitation
%20White%20Paper?OpenDocument 

U.S. Environmental Protection Agency. 2000. Arsenic in Drinking Water Rule Economic 
analysis. EPA 815-R-00-026. Available at https://www.epa.gov/dwreginfo/support-
documents-final-arsenic-rule 

U.S. Food and Drug Administration. 2020. “How Could Lowering Nicotine Levels in 
Cigarettes Change the Future of Public Health?” Webpage content current as of 
5/01/2020. Available at https://www.fda.gov/tobacco-products/public-health-
education/how-could-lowering-nicotine-levels-cigarettes-change-future-public-
health  

U.S. Food and Drug Administration. 2019a. Mammography Quality Standards Act; 
Amendments to Part 900 Regulations: Preliminary Regulatory Impact Analysis, 
Initial Regulatory Flexibility Analysis, Unfunded Mandates Reform Act. Docket No. 
FDA-2013-N-0134. Available at https://www.fda.gov/media/122866/download  

U.S. Food and Drug Administration. 2019b. Premarket Tobacco Product Applications 
and Recordkeeping Requirements. FDA-2019-N-2854. Available at 
https://www.fda.gov/about-fda/economic-impact-analyses-fda-
regulations/premarket-tobacco-product-applications-and-recordkeeping-
requirements-proposed-rule-preliminary  

US Food and Drug Administration. 2017. Food Labeling: Health Claims; Soy Protein 
and Coronary Health Disease. FDA-2017-N-0763. Available at 
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-
labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule 

US Food and Drug Administration. Undated. Food Labeling: Gluten-Free Labeling of 
Fermented or Hydrolyzed Foods. FDA-2014-N-1021. Available at  
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-
labeling-gluten-free-labeling-fermented-or-hydrolyzed-foods-regulatory-impact-
analysis-finale 

U.S. Health and Human Services. 2021. “Appendix D: Updating Value Per Statistical 
Life (VSL) Estimates for Inflation and Changes in Real Income.” Prepared by L.A. 
Robinson, J.R. Baxter, and W. Raich for the Office of the Assistant Secretary for 

https://www.regulations.gov/document/EPA-HQ-RCRA-2007-0932-0412
https://www.epa.gov/sites/default/files/2015-07/documents/fullreport_rev_a.pdf
https://www.epa.gov/sites/default/files/2015-07/documents/fullreport_rev_a.pdf
http://yosemite.epa.gov/sab/sabproduct.nsf/fedrgstr_activites/Expert%20Elicitation%20White%20Paper?OpenDocument
http://yosemite.epa.gov/sab/sabproduct.nsf/fedrgstr_activites/Expert%20Elicitation%20White%20Paper?OpenDocument
https://www.epa.gov/dwreginfo/support-documents-final-arsenic-rule
https://www.epa.gov/dwreginfo/support-documents-final-arsenic-rule
https://www.fda.gov/tobacco-products/public-health-education/how-could-lowering-nicotine-levels-cigarettes-change-future-public-health
https://www.fda.gov/tobacco-products/public-health-education/how-could-lowering-nicotine-levels-cigarettes-change-future-public-health
https://www.fda.gov/tobacco-products/public-health-education/how-could-lowering-nicotine-levels-cigarettes-change-future-public-health
https://www.fda.gov/media/122866/download
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule
https://www.fda.gov/about-fda/economic-impact-analyses-fda-regulations/food-labeling-health-claims-soy-protein-and-coronary-heart-disease-proposed-rule


 

 
 
 

 
38 

Planning and Evaluation. April 2021. Available at 
https://aspe.hhs.gov/reports/updating-vsl-estimates  

U.S. Health and Human Services. 2016. Guidelines for Regulatory Impact Analysis. 
Prepared by L.A. Robinson, J.K. Hammitt, J.R. Baxter, L. Ludwig, M. Black, and 
M. Welsh for the Office of the Assistant Secretary for Planning and Evaluation. 
Available at https://aspe.hhs.gov/reports/guidelines-regulatory-impact-analysis  

U.S. Office of Management and Budget. 2003. Circular A-4. Available at 
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A4/a-4.pdf  

U.S. Pipeline and Hazardous Materials Safety Administration. 2015. Final Regulatory 
Impact Analysis: Hazardous Materials: Enhanced Tank Car Standards and 
Operational Controls for High-Hazard Flammable Trains: Final Rule. Available at 
https://www.regulations.gov/document/PHMSA-2017-0102-0016 

U.S. Nuclear Regulatory Commission. 1975. Reactor Safety Study: An Assessment of 
Accident Risks in U.S. Commercial Nuclear Power Plants. WASH-1400 (NUREG-
75/014). Washington, District of Columbia. Available at 
https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr75-014/index.html  

U.S. Nuclear Regulatory Commission. 1983. PRA Procedures Guide: A Guide to the 
Performance of Probabilistic Risk Assessments for Nuclear Power Plants. 
NUREG/CR-2300. Available at https://www.nrc.gov/reading-rm/doc-
collections/nuregs/contract/cr2300/index.html  

U.S. Nuclear Regulatory Commission. 1997. Recommendations for Probabilistic Seismic 
Hazard Analysis: Guidance on Uncertainty and Use of Experts: Main Report. 
Prepared by R.J. Budnitz, G. Apostolakis, D.M. Boore, L.S. Cluff, K.J. 
Coppersmith, C.A. Cornell, and P.A. Morris. NUREG/CR-6372. 

U.S. Nuclear Regulatory Commission. 2012. Practical Implementation Guidelines for 
SSHAC Level 3 and 4 Hazard Studies. Prepared by Annie M. Kammerer and Jon P. 
Ake. NUREG-2117, Rev. 1. 

U.S. Nuclear Regulatory Commission. 2016. “White Paper: Practical Insights and 
Lessons Learned on Implementing Expert Elicitation.” Prepared by Jing Xing and 
Stephanie Morrow, Office of Nuclear Regulatory Research. October 13. 

Wallsten, T.S. 1986. Meanings of Nonnumerical Probability Phrases. Final Report for 
the Period 16 August 1983 Through 15 August 1986. L.L. Thurstone Psychometric 
Laboratory Research Memorandum No. 67. Chapel Hill, NC. 

 

https://aspe.hhs.gov/reports/updating-vsl-estimates
https://aspe.hhs.gov/reports/guidelines-regulatory-impact-analysis
https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A4/a-4.pdf
https://www.regulations.gov/document/PHMSA-2017-0102-0016
https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr75-014/index.html
https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr2300/index.html
https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr2300/index.html
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APPENDIX A:   COMMONLY USED PROBABILITY DISTRIBUTIONS 

This section describes the main characteristics of several probability distributions 
commonly used in Monte Carlo simulations. 

A.1  UNIFORM DISTRIBUTION 

The uniform distribution (Exhibit A-1) is used when the uncertainty of interest is a 
bounded, continuous variable where all outcomes have the same probability. It is one of 
the simplest means of representing uncertainty in a model input because it is defined by 
only two parameters, the minimum and maximum value.  

It is appropriate to use the uniform distribution when it is feasible to identify a range of 
possible values but when it is not feasible to identify that some values within the range 
are more likely to occur than others.  

Parameters are usually determined using subjective reasoning, asking experts to provide 
the minimum and maximum values possible for the uncertainty of interest.  

For example in the 2017 Soy Protein Relabeling analysis (US FDA 2017), a uniform 
distribution with minimum value of 200 and maximum value of 300 is used to model the 
likely number of products affected by the rule.  

EXHIBIT A-1.  EXAMPLE UNIFORM DISTRIBUTION 

 

A.2  TRIANGULAR DISTRIBUTION 

The triangular distribution (Exhibit A-2) is used for quantifying uncertainty with a rough 
three point estimation. It requires three parameters: a minimum, a maximum, and a most 
likely (mode) value. It is convenient and easy to understand and is appropriate when 
values near the middle of the range of possible values are considered more likely to occur 
than values near either extreme. 

The triangular distribution does not need to be symmetric around the mean; it may be 
right or left skewed. The arbitrary triangular shape can help convey the message that the 
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details of the shape are not precisely known which may help prevent an overinterpretation 
of results or a false sense of confidence. 

For example in the 2017 Soy Protein Relabeling analysis (US FDA 2017), triangular 
distributions are used to estimate the costs to relabel different types of products. Exhibit 
A-3 shows the parameters values used for each triangular distribution in the Soy Protein 
Relabeling RIA for the six different products studied. 

EXHIBIT A-2.  EXAMPLE TRIANGULAR DISTRIBUTION 

 

EXHIBIT A-3.  PARAMETER VALUES USED FOR EACH TRIANGULAR DISTRIBUTION IN FDA (2017) 

 

A.3  PERT 

The PERT distribution (Exhibit A-4) uses the same three parameters as the triangular: 
minimum, most likely value, and maximum. Like the triangular distribution, it places 
more emphasis on the most likely value over values around the minimum and maximum 
estimates. Unlike the triangular distribution, the PERT distribution constructs a smooth 
curve. Depending on the values provided, the PERT distribution can provide a close fit to 
the normal or lognormal distributions. 
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EXHIBIT A-4.  EXAMPLE PERT DISTRIBUTION 

 

A.4  NORMAL DISTRIBUTION 

Because of the central limit theorem, which results in a normal distribution for additive 
quantities, the normal distribution (Exhibit A-5) is commonly an appropriate distribution 
to use in modeling. The distribution is characterized by two parameters: the mean and the 
standard deviation. For many uncertainties, the normal distribution is theoretically 
inappropriate because negative values are allowed. This problem can be ignored in many 
applications if the coefficient of variation, which is the ratio of the standard deviation to 
the mean, is less than about 0.2 because negative numbers would be very unlikely to be 
drawn from the distribution by the simulation. 

EXHIBIT A-5.  EXAMPLE NORMAL DISTRIBUTION 

 

A.5  LOGNORMAL DISTRIBUTION 

The lognormal distribution (Exhibit A-6) results when the logarithm of the random 
variable is described by a normal distribution. The lognormal distribution is often found 
to be a good representation of physical quantities that are non-negative and positively 
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skewed such as pollutant concentrations, stream flows, or explosion intensity. The 
parameters mu and sigma of the lognormal distribution correspond to the mean and 
standard deviation of the variable of interest’s logarithm, something experts may have 
trouble intuiting. 

EXHIBIT A-6.  EXAMPLE LOGNORMAL DISTRIBUTION 

 

A.6  BETA DISTRIBUTION 

The beta distribution (Exhibit A-7) provides a flexible means of representing variability 
over a fixed range, generally between 0 and 1, but additional parameters can be assessed 
to change the range of endpoints. The beta distribution is commonly used to represent 
variable probabilities or proportions. 

EXHIBIT A-7.  EXAMPLE BETA DISTRIBUTION 
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APPENDIX B:   DISTRIBUTION SELECTION IN MONTE CARLO ANALYSIS  

In this section, we illustrate how the selection of probability distributions can influence 
the outcome of an RIA. We draw upon the information included in Appendix A 
(Commonly Used Probability Distributions) to illustrate the sensitivity of example net 
benefits calculations to the characterization of uncertainty in key values. This example is 
not meant to be prescriptive – analysts may have reason to select alternative distributions 
from those presented in this appendix. 

In the remainder of this section, we estimate the benefits and costs of a hypothetical 
rulemaking intended to reduce the risk of premature death in the United States. To 
characterize uncertainty in key values, we conduct a Monte Carlo simulation using the 
@Risk extension to Microsoft Excel.13 These results are compared against a deterministic 
analysis in which best, or central, estimates are used without consideration of underlying 
uncertainty. 

To quantify and monetize the benefits of this rule, we estimate the number of premature 
deaths avoided and value these deaths using estimates of the value per statistical life 
(VSL). In this example, both variables are uncertain. Analysts have estimated that the 
number of premature deaths could range from 20 to 80, with a best estimate of 40 deaths 
annually. Similarly, the Guidelines provide a low, central, and high estimate for VSL. 
These values are summarized in Exhibit B-1 and are assumed to reflect values for one 
year (in this case, 2021). Monetary values are expressed in 2014 dollars to facilitate 
comparison with HHS’ Guidelines (see Table 3.1).14 

EXHIBIT B-1.  KEY PARAMETERS FOR BENEFITS ESTIMATION 

PARAMETER LOW CENTRAL / BEST HIGH 

Premature deaths avoided 20 40 80 

Value per statistical life 
(2014$, 2021 income levels) $4.8 million $10.3 million $15.6 million 

 

Next, we fit probability distributions to the low, central, and high estimates presented in 
Exhibit B-1. For each variable (deaths avoided and VSL), we fit three distributions: 
uniform, triangular, and PERT. These three distributions assign zero probability density 
outside of the range defined by the low and high estimates. That is, these values are 
treated as “bounds” inside of which we are certain the true parameter lies. In practice, 
analysts may wish to select alternative distributions. For example, we note that the tails of 

 
13

 @Risk is a software add-in to Microsoft Excel that allows users to conduct Monte Carlo simulations. It is produced and sold 

by the Palisade Company (www.palisade.com). 

14
 For a discussion of adjustments made to the VSL to account for inflation and changes in real income, see Chapter 3 of the 

Guidelines, or an expanded discussion contained in HHS (2021).  

http://www.palisade.com/
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the VSL distribution likely extend beyond these bounds.15 The resulting probability 
distributions are displayed in Exhibits B-2 and B-3. 

EXHIBIT B-2.  VSL SAMPLE PROBABILITY DISTRIBUTION 

 
  

 
15

 The low and high VSL estimates used by HHS are each derived from individual studies estimating willingness to pay for 

mortality risk reductions. These studies acknowledge and quantify uncertainty in their best estimates. Additionally, the HHS 

VSL estimates are based on few studies selected through a criteria-driven literature review for their high quality and 

applicability to HHS regulatory analysis (see Robinson and Hammitt 2016). Other peer-reviewed research, while likely less 

applicable to the HHS context or of lower quality, provide alternative VSL estimates that fall outside of the range presented 

in HHS’ Guidelines. 
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EXHIBIT B-3.  AVOIDED PREMATURE DEATHS SAMPLE PROBABILITY DISTRIBUTION 

 

Following parameterization of these distributions, we conduct a Monte Carlo simulation 
to estimate the benefits of this rule. We use @Risk to simulate 10,000 draws from each of 
the distribution. Total benefits are estimated by multiplying one VSL draw by one 
avoided deaths draw. Importantly, these distributions are assumed to be independent. 
That is, the value selected for VSL does not influence the value selected for avoided 
deaths, and vice versa. Combining three VSL distributions and three premature death 
distributions yields nine total benefits estimates, depicted in Exhibit B-4. 
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EXHIBIT B-4.  ESTIMATED BENEFITS BASED ON DIFFERENT COMBINATIONS OF DISTRIBUTIONS 

 UNIFORM VSL TRIANGULAR VSL PERT VSL 

UNIFORM 

AVOIDED 

DEATHS 

   

TRIANGULAR 

AVOIDED 

DEATHS 

   

PERT 

AVOIDED 

DEATHS 

   

Notes: These histograms depict the relative frequency of simulated total benefits ($2014, millions). 10,000 simulations using @RISK. 
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As illustrated in Exhibit B-5, the selection of probability distribution influences the shape 
of the resulting distribution of simulated benefits. For example, using uniform 
distributions for both VSL and avoided deaths (upper left panel) results in a right-skewed 
distribution with fat tails (i.e., significant probability density at the extreme values). In 
contrast, combining PERT distributions (bottom right) results in a less skewed 
distribution with thinner tails. To better understand how these distributions compare 
across key summary statistics, we present the mean and 95 percent confidence intervals 
for each distribution in Exhibit B-5. 

EXHIBIT B-5.  SUMMARY STATISTICS  FOR S IMULATED TOTAL BENEFITS  (2014$, MILLIONS)  

DISTRIBUTION FOR 

AVOIDED 

PREMATURE DEATHS 

DISTRIBUTION FOR VSL 

UNIFORM TRIANGULAR PERT 

UNIFORM 
510 

(158 – 1,048) 
476 

(183 -933) 
442 

(173 – 844) 

TRIANGULAR 
512 

(183 – 957) 
477 

(217 – 858) 
444 

(205 – 783) 

PERT 
514 

(190 -951) 
479 

(223 – 842) 
445 

(214 – 772) 

 

Simulated benefits range from a mean of $442 million to $514 million depending upon 
the choice of probability distributions. In this example, selecting a PERT distribution for 
VSL yields a lower mean benefit estimate relative to triangular and uniform distributions. 
Mean estimates are higher for triangular VSL distributions, and uniform VSL 
distributions result in the highest mean benefit estimates ($510 to $514 million). 
Uncertainty bounds similarly differ by distribution. Uniform distributions, which place 
more weight near the lower and upper bounds than most conventional distributions, 
produce the widest confidence intervals. 

To illustrate the potential impact of these patterns on net benefits, we simulate a cost 
distribution ranging from $200 to $400 million (PERT distribution, $250 million best 
estimate). While this range falls below the mean benefits of the rulemaking, the tails of 
the distribution overlap with portions of the benefits distribution, resulting in net costs for 
some of the 10,000 draws. We assume independence between the cost and benefit 
distributions; however, analysts may need to consider whether this assumption is 
appropriate in other contexts.16 Simulated net benefits are summarized in Exhibit B-6, 
which provides histograms to show the relative frequency of net benefits draws in bins 
representing increments of $50 million. 

 
16

 For example, costs and benefits may be correlated if each component is influenced by the effectiveness of a regulatory 

measure (e.g., the number of regulated firms adopting a safer technology influences exposure rates).  
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EXHIBIT B-6.  ESTIMATED NET BENEFITS  BASED ON DIFFERENT COMBINATIONS OF DISTRIBUTIONS 

 UNIFORM VSL TRIANGULAR VSL PERT VSL 

UNIFORM 

AVOIDED 

DEATHS 

   

TRIANGULAR 

AVOIDED 

DEATHS 

   

PERT 

AVOIDED 

DEATHS 

   

Notes: These histograms depict the relative frequency of simulated net benefits ($2014, millions). Values in red depict net costs. Values in blue depict net benefits. 
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As demonstrated in Exhibit B-6, the selection of benefits distributions can influence the 
resulting probability of a rulemaking producing net benefits. In this example, costs 
exceed benefits in 8 to 18 percent of draws (depicted in red) depending upon the selected 
distributions. Simulated mean net benefits are presented in Exhibit B-7, along with the 
percent of draws producing net benefits. 

EXHIBIT B-7.  S IMULATED MEAN NET BENEFITS (2014$, MILLIONS)  AND PERCENT OF DRAWS 

PRODUCING NET BENEFITS 

DISTRIBUTION FOR 

AVOIDED 

PREMATURE DEATHS 

DISTRIBUTION FOR VSL 

UNIFORM TRIANGULAR PERT 

UNIFORM 243 (83.9%) 209 (85.9%) 175 (82.3%) 

TRIANGULAR 244 (87.2%) 211 (91.1%) 177 (88.3%) 

PERT 247 (87.6%) 213 (91.9%) 178 (89.4%) 

 

We estimate net benefits across all nine distribution sets. These net benefits range from 
$178 to $247 million, with relative magnitudes mirroring those summarized for total 
benefits: uniform VSL distributions produce the greatest net benefits ($243 to 247 
million), followed by triangular ($209 to $213 million) and PERT distributions ($175 to 
$178 million). Given the wider uncertainty bounds produced by the uniform distributions 
(see previous Exhibit B-5), these results also produce the highest number of simulated net 
cost draws (i.e., instances where costs exceed benefits). In contrast, the PERT and 
triangular distributions are more likely to produce positive net benefits due to their 
thinner tails. 

Relative to a deterministic net benefits calculation, the distributions applied in this 
appendix communicate much of the uncertainty associated with the results. Applying the 
central estimates for VSL and deaths, an analyst would otherwise estimate benefits of 
$412 million, costs of $250 million, and net benefits of $162 million. While close to some 
of the results included in this appendix, the “best estimate” falls below the means of all 
simulated distributions and fails to depict the possibility that costs could exceed benefits. 

In summary, distribution choice can factor heavily into the resulting estimates of net 
benefits. In addition to affecting the mean estimates of net benefits, distribution choice 
will affect the uncertainty surrounding the mean value. For example, uniform 
distributions place equal weight in the tails of the distribution relative to most continuous 
distributions (e.g., normal, log-normal, PERT, triangular), which assign greater weight to 
one portion of the distribution. In our example, uniform characterization of uncertainty 
results in higher net mean benefits but also suggests a higher likelihood of costs 
exceeding benefits.  

While we estimate net (mean) benefits for the nine combinations of probability 
distributions in our example, the choice of distribution can be important enough to 
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reverse the expected sign of the net benefits. This suggests that, in cases where benefits 
and costs are more similar, careful selection of distributions is particularly important. For 
additional discussion of the choice and selection of distributions, see Appendix A. 
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APPENDIX C:   KEY CONSIDERATIONS WHEN CONDUCTING FORMAL,  STRUCTURED 

EXPERT ELICITATION  

Exhibit C-1 summarizes the key steps in the conduct of formal, structured expert 
elicitation (also described in Section 5.0 of this paper).17 In this appendix, we describe 
key considerations for each step. In some cases, these considerations are also relevant to 
less formal elicitation processes. 

EXHIBIT C-1.  GENERALIZED STEPS FOR STRUCTURED EXPERT ELICITATION 

STEP DESCRIPTION 

1 Develop background information and prepare for the elicitation 

2 Identify and recruit experts 

3 Conduct the elicitation 

4 Report results 

5 Document and verify the process 

 

STEP 1:   DEVELOP BACKGROUND INFORMATION AND PREPARE FOR THE  

ELICITATION 

The process begins with a series of important choices, including: (1) how to define and 
structure the questions; (2) whether to conduct an individual or group elicitation; (3) how 
to staff the elicitation team; and (4) how to assemble, disseminate, and refine the 
background information. Choices made during the background and preparation phase 
require careful attention because they can have important consequences for the elicitation 
itself. 

Among the most important choices is defining the uncertain value that will be the focus 
of the elicitation. Ideally, the elicitation should involve estimating a quantity. The value 
of interest must be well-specified, in the sense that it could be resolved, at least in 
principle, by some experiment or measurement.18 In addition, it should be one for which 
there is a basis for forming and justifying judgments. When crafting the questions, it is 
also important to consider relationships between the uncertain value and other variables. 
The elicitation team may find it useful to develop a decision tree to illustrate the 
relationships between key factors that influence the value of interest, as introduced in 

 
17

 Several approaches are described in the available literature. While the steps in each approach are not identical (e.g., 

certain activities may be undertaken earlier or later in the process), the broad outline is similar across approaches. 

18
 Experts in elicitation refer to this criterion as the “clairvoyant test,” which requires that an omniscient being with 

complete knowledge of the past, present, and future could determine whether a specified value is correct of incorrect 

(Morgan and Henrion 1990). The idea is that the value being elicited should be clear and not subject to interpretation. For 

example, if an expert is asked to predict the likelihood that the following day will be cloudy, he may define “cloudy” 

differently than the individuals conducting the elicitation. Instead, the question should be constructed precisely (e.g., the 

likelihood that Region A will experience complete cloud cover for more than 50 percent of daylight hours) so that there is 

no room for misinterpretation.  



 

 
 
 

 
52 

Section 4.3 and discussed in more detail in related texts (Clemen 1996, Morgan 2014, 
EPA 2009).  

Additionally, a choice must be made about whether to construct the questions using an 
“aggregated” or “disaggregated” approach. In an aggregated approach, the uncertain 
value is obtained through a single question (e.g., how many deaths would be prevented if 
the new labeling rule is implemented), whereas in the disaggregated approach, the 
quantity is obtained through a series of questions (e.g., what is the likelihood that 
consumers will respond to labels; what change in consumption is likely if consumers 
respond)? Disaggregation (or “decomposition”) of a question is often recommended as a 
way to “divide and conquer” a complex problem (Clemen 1996, Hora 2007). However, 
the disaggregation process can be time-consuming, and it is possible to over decompose 
an uncertain value and make the assessment task more difficult (Hora et al. 1993). 
Therefore, an elicitation team just find a balance between an overly aggregated value 
definition and an overly granular one. 

STEP 2:   IDENTIFY AND RECRUIT EXPERTS 

Selecting experts is one of the most important steps in the elicitation process, as the 
outcome of the elicitation depends on their personality, experience, and technical 
background (O’Hagan et al. 2006). There are three main choices: (1) who should be 
selected as an expert; (2) how should the experts be selected; and (3) how many experts 
should be selected.  

Experts should satisfy two principal criteria: they must have substantive expertise 
relevant to answering the question, and they must be able to think about quantifying their 
judgments of the uncertain value using subjective probability. They should also be free of 
financial or personal conflicts of interest and other characteristics that may make them 
appear to lack impartiality (O’Hagan et al. 2006, U.S. EPA 2009). The experts should 
also represent a balanced range of opinions, particularly when the stakes are high (Knol et 
al. 2010, U.S. EPA 2009).  

There are a variety of approaches for nominating and selecting experts, most of which 
involve assessing the breadth and influence of a potential experts’ body of published 
work and/or recommendations or nominations from respected organizations or persons. 
The number of experts needed for a given elicitation depends on a number of variables, 
including: the complexity of the task, the diversity of scientific points of view, the 
resources of the project, regulatory limitations (i.e., the Paperwork Reduction Act), and 
the objectives of the elicitation (i.e., whether results will be combined or not) (Hammitt 
2011).19 

 
19

 Under the Paperwork Reduction Act, OMB approval is needed to collect the same or similar information from more than 

nine individuals. Seeking such approval requires substantial time and effort. 
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STEP 3:   CONDUCT THE ELICITATION 

Conducting the elicitation is the most complicated part of the process, requiring skilled 
normative and subject matter experts (SMEs) to guide the questioning.20 A substantial 
body of literature focuses on particular aspects of the elicitation activities, including 
methods for motivating and training experts; and tools for eliciting probability 
distributions.21 

In structured expert elicitation, experts are asked to characterize, in quantitative terms, 
their uncertainty associated with a given value. This uncertainty is generally described in 
terms of probabilities. Morgan and Henrion (1990) note that most people find it easiest to 
express probabilities qualitatively, using words such as “credible,” “likely,” or 
“extremely improbable.” However, they cite evidence from the literature that the 
interpretation of the quantitative value associated with these types of qualitative terms 
varies widely across individuals and depends on context. Thus, researchers agree that 
using qualitative descriptors in elicitations generally produces unreliable results (Morgan 
and Henrion 1990 and Wallsten 1986, as quoted in U.S. EPA 2009). By contrast, 
quantitative probabilities provide a clear sense of likelihoods and a consistent 
interpretation that facilitates both comparisons between experts and synthesis of 
responses across experts. 

The individual facilitating the elicitation must establish a rapport with the experts to 
provide an incentive for developing careful, thoughtful responses (Clemen 1996, 
O’Hagan et al. 2006) and help them understand how their judgments will be used and 
why the information is important. Experts, particularly scientists, may be hesitant to 
express uncertain opinions that may or may not be “correct” (Clemen 1996, O’Hagan et 
al. 2006), therefore, it is also important to assure them that uncertainty is natural. 

Judgments may be elicited in several forms, including discrete values (e.g., probabilities, 
percentages, odds) and continuous probability distributions. Morgan and Henrion (1990) 
note that, in practice, most techniques for eliciting continuous distributions rely on asking 
a series of discrete assessments of specific points in the distribution, which are used to 
estimate a continuous distribution. Several tools may be used to help experts visualize 
probabilities and make judgments, such as marking a point on a scale of zero to one, a 
probability wheel, or a reference lottery (Morgan and Henrion 1990, Goodwin and 
Wright 2004).  

Despite experience working with numbers and even statistics, many experts, including 
scientists, lack extensive experience using subjective probability to quantify their 
judgments. Thus, the expert elicitation community is in agreement with regard to the 
importance of providing training to the experts prior to eliciting judgments (Clemen 
1996, O’Hagan et al. 2006, EPA 2009, EFSA 2014, Cooke and Goossens 1999). Training 

 
20

 These individuals are part of the elicitation team and are distinct from the experts providing judgments. Both can be 

internal HHS staff. The normative expert should have training in best practices for conducting an elicitation. 

21
 Activities related to motivating and training experts can also occur during a pre-elicitation workshop or at the beginning of 

the elicitation session (Cooke and Goossens 1999, O’Hagan et al. 2006, EPA 2009). 
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might include asking the experts to practice characterizing uncertainty using questions 
where the answers are known to the facilitator but not the experts. Another common 
element of training focuses on educating experts about common heuristics and biases, 
such as representativeness, availability, anchoring and adjusting, and motivational bias, 
based on the pioneering work of Tversky and Kahneman (1974) (for a discussion of each 
concept, see Clemen 1996). 

Finally, a substantial body of literature is devoted to the questions of whether expert 
judgments should be elicited individually or in a group setting. Key strengths of group 
elicitations include avoiding the need to decide whether and how to aggregate individual 
judgments, allowing experts to pool their knowledge, and providing opportunity for 
experts from different disciplines to interact. However, a key drawback is the potential 
for a few outspoken or more senior individuals to dominate the discussions and a 
tendency for overconfidence. Additional general discussion of the strengths and 
weaknesses of individual versus group methods can be found in Clemen and Winkler 
(1999) and O’Hagan et al. (2006). 

STEP 4:   REPORT THE RESULTS 

The elicitation team should report the judgments provided by each expert, including 
rationale, dependence on ancillary assumptions, or any other important information. If 
judgments are elicited individually, then the team must choose whether and how to pool 
the judgments. Options generally include a Bayesian approach, linear opinion pooling, 
and Cooke’s Classical Model. For additional discussion of the strengths and limitations of 
each, see Clemen and Winkler (1999), O’Hagan et al. (2006) and, Cooke (1991). 

STEP 5:   DOCUMENT AND VERIFY THE PROCESS 

The elicitation team should thoroughly document the expert elicitation to ensure 
transparency and replicability. This information may be included as an appendix to the 
RIA or in a stand-alone report that is referenced in the RIA and made available to the 
public. In addition, depending on whether the elicitation will be used in a “high stakes” 
rule (see Section 3.2), the elicitation team may wish to consider a peer review of the 
process. 

For reference, examples of recent studies using structured expert elicitation to 
characterize the uncertainty associated with key parameters used in benefit-cost analysis 
of Federal regulations include elicitations of mortality risks associated with particulate 
matter (Roman et al., 2008) and the value per statistical life (Roman et al. 2012). 
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