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Executive Summary 
INTRODUCTION AND BACKGROUND 
The Training Data for Machine Learning to Enhance PCOR Data Infrastructure project (hereafter termed 
the Project) led by the Office of the National Coordinator for Health Information Technology (ONC) 
conducted foundational work to support future applications of artificial intelligence (AI), specifically focused 
on machine learning (ML) to further health, health care, and patient-centered outcomes research (PCOR), 
and in turn enhance the adoption and implementation of a PCOR data infrastructurei. This Project is fundedii 
through the PCOR Trust Fund (PCORTF), established under the Patient Protection and Affordable Care 
Act of 2010, and managed by the Department of Health and Human Services (HHS) Assistant Secretary 
for Planning and Evaluation (ASPE) that leads projects to build PCOR data capacity and infrastructure.  

A major challenge for advancing AI/ML applications to accelerate clinical innovation and support evidence-
based decisions in clinical settings is the lack of high-quality training dataiii. To address this challenge, ONC 
partnered with the National Institutes of Health (NIH) National Institute of Diabetes and Digestive and 
Kidney Diseases (NIDDK) to define and develop high-quality training datasets that were provisionally tested 
using three ML algorithms. The Project used data from the United States Renal Data System (USRDS) to 
prepare these training datasets and to apply ML techniques for an end stage kidney diseaseiv (ESKD)/end 
stage renal disease (ESRD) use case. A key aspect of implementing this project was the engagement of a 
technical expert panel (TEP) composed of experts from AI/ML and health information technology and a 
patient advocate – who played a crucial role in vetting the criteria for high-quality training datasets and the 
methods and results from building the training datasets and ML models.  

Dissemination of resources generated from this Project, including the detailed methodology and the code 
that was developed, points to consider when building training datasets and ML models, and 
recommendations for future projects gathered from the TEP, further promotes the broader application of 
AI/ML by PCOR researchers (these resources are available in the Implementation Guide and this Final 
Report).  

DEVELOPMENT OF HIGH-QUALITY TRAINING DATASETS AND ML 
MODELS  
The use case – predicting mortality in the first 90 days of dialysis – was selected because mortality in the 
first 90 days of dialysis initiation in ESKD/ESRD patients remains notably highv,vi. From a patient-centered 
perspective, an ML model that predicts mortality in the first 90 days could inform patient-provider joint 
clinical decisions on whether to initiate dialysis. 

The overall dataset was prepared using variables in the USRDS data with clinical relevance and prognostic 
value for mortality in the first 90 days after dialysis initiation. The criteria for high-quality training datasets 
were defined with input from TEP and other stakeholders and included applying inclusion/exclusion cohort 
selection requirements, structuring and curating to ensure that missing values and outliers were handled 
appropriately, scaling and balancing the data, and preparing a data dictionary with all the features selected 
for ML modeling. The features in the training dataset only included information known on or prior to the first 

https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
https://www.usrds.org/
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day of dialysis and consisted of 188 features, with one record per patient. Two sets of features were 
included in the dataset – features taken directly from the USRDS data and those that were constructed.  

Three ML algorithms (a mixture of non-parametric and parametric) were selected with guidance from the 
TEP to provisionally test the training datasets and develop ML models – eXtreme gradient boosting 
(XGBoost), logistic regression, and multilayer perceptron (MLP). Both non-imputed and multiply imputed 
datasets were used for XGBoost modeling to compare the contribution of multiple imputation on the model 
performance, whereas only the multiply imputed dataset was used for logistic regression and MLP, as these 
algorithms cannot natively handle non-informatively missing values. Due to the differing requirements of 
the input training dataset for these models, additional data processing steps were performed that included 
one-hot encodingvii, standardizationviii, and balancingix. Hyperparameters were tuned using the training 
dataset, and the final model was trained on the training dataset and evaluated on the testing dataset.  

Performance of the models measured using receiver operating characteristic (ROC) area under the curve 
(AUC) showed high ROC AUC that ranged between 0.812 – 0.827. Calibration of the XGBoost models by 
plotting the observed versus estimated risk indicates an accurately estimated probability of mortality across 
all ranges of predicted risk. Features ranked in the top 10 by XGBoost and logistic regression included 
indicators of general health status, length of time prior to ESKD/ESRD, and the quality of care delivered. 
Performance of the models assessed for fairness measured by ROC AUC across demographic categories 
(age, race, sex) and initial dialysis modality demonstrated that XGBoost performed consistently across the 
evaluated categories as compared to logistic regression and MLP models. 

RECOMMENDATIONS FOR SUPPORTING THE FUTURE APPLICATION 
OF ML TO HEALTH, HEALTH CARE, AND PCOR 
A major objective of this foundational project was to identify areas for future PCOR studies based on the 
challenges encountered and the findings from building the training datasets and ML models. Towards that 
end, the TEP and other stakeholders provided significant input and multiple recommendations for building 
upon the outputs and outcomes throughout the course of this project. These are detailed in this Final Report 
and include general strategic recommendations for industry to consider in advancing the application of 
AI/ML for PCOR and health care and specific more pragmatic recommendations for future PCOR 
researchers to build upon the training dataset and ML models developed in this project. 

CONCLUSION 
The project addressed the goal of building and testing high-quality training datasets for a kidney disease 
use case that can potentially be utilized for AI/ML applications, including joint clinician-patient informed 
decision making. PCOR researchers can build off the foundational work completed through this project and 
extend the application of these methods to a wider array of use cases and advance the application of ML 
to enhance PCOR infrastructure.  
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Introduction  
The Training Data for Machine Learning to Enhance PCOR Data Infrastructure project (hereafter the 
Project) led by the Office of the National Coordinator for Health Information Technology (ONC) conducted 
foundational work to support future applications of artificial intelligence (AI), specifically focused on machine 
learning (ML) to further health, health care, and patient-centered outcomes research (PCOR), and in turn 
enhance the adoption and implementation of a PCOR data infrastructurei. PCOR is “designed to produce 
scientific evidence to inform and support health care decisions of patients, families, and providers. PCOR 
focuses on studying the effectiveness of prevention and treatment options with consideration of the 
preferences, values, and questions patients face when making health care choices”x. This Project is funded 
through the PCOR Trust Fund (PCORTF), created under the Patient Protection and Affordable Care Act of 
2010, and managed by the Department of Health and Human Services (HHS) Assistant Secretary for 
Planning and Evaluation (ASPE). ASPE partners with 12 HHS agencies to lead intradepartmental projects 
that build data capacity and infrastructure for conducting PCOR.  

AI/ML applications have the power to utilize large amounts of real-world clinical data in varied and complex 
formats to rapidly identify effective treatments, potentially accelerating clinical innovation and supporting 
evidence-based decisions in clinical settingsxi,xii,xiii. However, the wide-spread application and adoption of 
AI/ML in health care and PCOR is wrought with challenges, including the lack of high-quality training data 
from which to build and maintain AI applications in healthxiv. This Project was undertaken to address the 
challenge of the lack of availability of high-quality training datasets. This Project informs future work that 
aims to leverage AI/ML to develop scientific approaches to support personalized medicine so that providers 
can eventually match patients to the best treatments based on their specific health conditions, life-
experiences, and genetic/phenotypic profiles. 

To support the goal of conducting foundational work that will facilitate future applications of AI/ML and 
enhance PCOR data infrastructure, ONC partnered with the National Institutes of Health (NIH) National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Through this Project, ONC and NIDDK 
have advanced the application of AI and ML algorithms in PCOR by defining requirements for high-quality 
training datasets. The Project used data from the United States Renal Data System (USRDS)xv to prepare 
high-quality training datasets and to apply machine learning techniques for a chronic kidney disease use 
case of predicting mortality within the first 90 days of dialysis.  

A technical expert panel (TEP) assembled for the Project composed of AI/ML and health IT experts and a 
patient advocate was instrumental in vetting the methodology, interpreting the findings, and helping to 
address the challenges encountered during the training dataset and ML development process. The TEP 
offered directional guidance and recommendations for other PCOR investigators to build upon the results 
of this Project and future opportunities related to the development and application of AI/ML to health, 
healthcare, and PCOR.  

This project facilitates the broader application of AI/ML by PCOR researchers through the resources 
generated from this project including the methodology used and lessons learned in building the training 
dataset and ML models, and recommendations for future projects gathered from the technical experts 
assembled for this project. Foundational knowledge gathered from this project aligns with the goals of other 

https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
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PCORTF and ASPE funded projects aimed at enhancing the PCOR data infrastructure, including the 
Patient Matching, Aggregation, and Linking project that developed a framework to address data quality and 
data sharing, the privacy-preserving record linkage project that facilitates the linking of data from diverse 
data sources, and the more recent projects such as the building infrastructure and evidence for COVID-19 
related research by developing synthetic linked data files or using split-learning ML techniques to enable 
health information exchange. Evidence generated from this Project also supports multiple federal and HHS 
investments, including the Precision Medicine Initiative (PMI), the Transitions in Care program conducted 
in coordination with the Department of Veterans Affairs, and agency-specific, and related NIDDK-funded 
kidney research programs such as the Kidney Precision Medicine Project. 

PROJECT GOAL 
The goal of the project was to conduct foundational work of building a high-quality training dataset and 
ML models that serve to advance the capacity of PCOR infrastructure and support the application of ML 
by future researchers. This goal was achieved primarily through the following objectives in close 
coordination with the TEP:  

• Preparing  high-quality training datasets using USRDS data to address a kidney 
disease use case—predicting mortality within the first 90 days of dialysis 

• Developing ML models based on three algorithms—eXtreme gradient boosting 
(XGBoost), logistic regression, and multilayer perceptron (an artificial neural network 
implementation)—to provisionally test the respective training datasets derived from the 
original high-quality full training dataset  

• Validating the approaches for building the ML models by evaluating their performance 
using conventional metrics such as area under the curve (AUC) and a confusion matrix 
(used to calculate metrics such as sensitivity, specificity, positive predictive value, 
likelihood ratio, F1 score, etc.) 

• Disseminating resources generated in the project, including considerations and best 
practices identified during the preparation of the training dataset and ML models, the 
ML code, and an implementation guide that future researchers can refer to when 
preparing training datasets and ML models for new kidney disease use cases  

The project launched in September 2019 and was completed in September 2021. 

https://www.healthit.gov/topic/scientific-initiatives/pcor/patient-matching-aggregating-and-linking-pmal
https://www.sciencedirect.com/science/article/pii/S0306437912001470
https://aspe.hhs.gov/building-infrastructure-and-evidence-for-covid-19
https://aspe.hhs.gov/using-machine-learning-techniques
https://aspe.hhs.gov/using-machine-learning-techniques
https://obamawhitehouse.archives.gov/precision-medicine
https://innovation.cms.gov/innovation-models/cctp#:%7E:text=The%20Community%2Dbased%20Care%20Transitions,for%20high%2Drisk%20Medicare%20beneficiaries.
https://www.kpmp.org/
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Background  
AI implementations are revolutionizing medical research and health care as evidenced by the increasing 
number of applications and tools being developed to automate and/or augment human tasks and decisions 
with the eventual goal of improving health carexi,xii,xiii,

xviii. Most of these are focused on cardiovascular or general 
health conditions and diabetes; only three applications have been developed for kidney diseases, none of 
which have been cleared by the FDA. Multiple studies, however, have focused on examining the use of ML 
in kidney conditions for assessing and classifying histopathological images, and predicting disease 
progression and survival

xvi. AI techniques, such as, ML are being used to identify 
patterns, classify information, discover associations, test hypotheses, and generate new clinical decision 
tools. The area that has seen the most advances with AI applications is medical imagingxvii, where the U.S. 
Food and Drug Administration (FDA) has approved close to 100 tools that employ some form of ML to 
acquire, screen, stratify, and interpret images and prepare reports that radiologists use for patient care. 
Other applications of AI in health care are still nascent—while there are approximately 109 AI-based non-
imaging products or tools that have been developed in the past two decades, only about 20% have received 
FDA approvals and are being used in the clinic

xix,xx,xxi.  

Most of the ML applications developed to-date involve supervised learning, where an algorithm iteratively 
learns from a training dataset that consists of a large set of observations to classify or predict an outcome. 
The performance of the trained algorithm is then evaluated against a distinct test dataset. The potential for 
applying such ML techniques in improving patient care is highlighted by some key developments that have 
occurred in the past decade: 

• The availability of a vast volume of data from electronic health records (EHRs) and 
administrative data (such as Medicare claims), collected during routine patient care, 
that are stored in general or disease specific databases  

• The increasing number of patients and study participants who are willing to share their 
data collected during clinical care, clinical trials, and research studies, and via patient 
reported outcome data, and social media 

• Continuous improvements of AI/ML applications fueled by innovative solutions 
developed through broad stakeholder participation, including government, industry, 
academic, patients, and private citizens  

Translating the findings from ML-based classification or prediction models to real world data and its broad 
adoption in health care settings, however, requires addressing challenges associated with the pivotal 
component of all ML—the data—specifically, the quality of training datasets. High-quality training datasets 
that are well-labeled, well-structured, and use common data elements are essential to train prediction 
models that use ML algorithms, extract features most relevant to specified research goals, and reveal 
meaningful associations. Challenges surrounding the availability of high-quality training datasets include: 

• Real world data collected via EHR systems or from clinical research studies, registry 
based data, and other data collection systems are complex, diverse, and often noisy, 
error-prone, have incorrect, outlier or missing values, and have inconsistent measures 
and values across multiple facilities, even within the same health care setting  
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• Variables, even those often considered to be core features in a training dataset (e.g., 
dates, sex, race, ethnicity), are often not collected in a standardized format and can 
lack proper annotations 

• Duplicate datasets for patients within the same EHR or data collection systems due to 
lack of provenance or audit trail of the data 

• Representativeness of observations/patients captured within an EHR system 
• Insufficient quantity of data with desired features for a specific ML use case  
• Regulatory and proprietary obstacles to accessing EHR data 

Health care providers and patients alike need to have high confidence the clinical decision supporting 
predictive or classifier AI tools developed are accurate and reliable. The availability of high-quality training 
datasets is therefore a fundamental requirement for developing and deploying ML tools in clinical settings. 

This Project was undertaken to help address the lack of availability of high-quality training datasets. To 
start, there is no standard definition of what constitutes a high-quality training dataset, and since ML models 
are custom tailored to the dataset on which it is trained, many ML practitioners define quality as a function 
of the ML model that will be developed (for example: some algorithms can inherently handle missing values 
and others cannot). Nevertheless, there are some baseline characteristics that all training datasets must 
have for successful use in developing ML applications. Towards identifying these baseline characteristics, 
and to develop a high-quality training dataset that can be employed for addressing the kidney disease use 
case selected for the project—predicting mortality in the first 90 days of dialysis, this project was 
implemented based on the following principles: 

• Engaging clinical domain experts in kidney diseases throughout the course of the 
project to ensure that the training datasets and ML models are clinically relevant and 
patient-centered  

• Pre-defining the quality criteria for the training dataset that was prepared and validating 
its quality (e.g., by testing the goodness of the imputations performed for missing 
values)  

• Vetting the approaches and methodology used to build the training dataset and ML 
models, and reviewing the results and findings with a TEP consisting of AI/ML domain 
experts with broad experience in advanced ML techniques such as deep learning, 
health information technology (IT) solutions, and patient advocacy  

• Capturing and incorporating lessons learned and recommendations provided by 
various stakeholders throughout the course of the project  

Disseminating project progress and obtaining feedback from an Interagency Assembly with clinical and AI 
experts from across the federal agencies, including the NIH, FDA, the Centers for Medicare & Medicaid 
Services (CMS), Department of Veterans Affairs (VA), Centers for Disease Control and Prevention (CDC), 
Census Bureau, etc., that was established for the project. 
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Overall Approach for Building the 
Training Dataset and ML Models 
The overall approach for building the training dataset and the ML models is based on the Cognitive Project 
Management for Artificial Intelligence (CPMAITM) methodology

xxiii) methodology, which defines a 
robust and proven approach for applying analytics to practical challenges. The CRISP

xxii, a detailed implementation of the widely 
used Cross-Industry Standard Process for Data Mining (CRISP-DM

-DM methodology 
has six phases; five are shown in Figure 1 below. The last phase of ‘Deployment’—the step of making the 
model available to end users of the model, such as in a clinic or a hospital or dialysis center—is beyond the 
scope of this project.  

Figure 1: CRISP-DM Methodology Adapted for Clinical Research Applications 

 
 

The detailed methodology for each of these steps used in the project aligns to the Patient-Centered 
Outcomes Research Institute (PCORI) Methodology Standards Checklist to ensure that the overall study 
design addresses patient centeredness appropriately.  

https://www.pcori.org/document/methodology-standards-checklist
https://www.pcori.org/document/methodology-standards-checklist
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Kidney Disease Use Case for the 
Project 
Kidney disease-focused use cases are suitable for employing machine learning approaches because of the 
spectrum of kidney disease phenotypes, its impact on a myriad of important clinical, patient-centered, and 
health systems outcomes, and its large dependence on laboratory values over time for diagnosis and 
management. ML approaches could be applied to use cases ranging from prognostication of key outcomes 
such as progression to ESKD/ESRD, cardiovascular events or hospitalizations, identification of novel 
therapeutic pathways, and prediction of adverse drug events that could inform clinical decision-making. 
Such patient centric upstream use cases require access to a wealth of EHR or biospecimens linked to data 
on clinical phenotypes, which are not readily available or challenging to access due to privacy protections 
and lack of “cross-talk” across EHR platforms. While the original goal for this Project was to test ML 
approaches on use cases upstream of late-stages of kidney disease progression to help patients and their 
providers make informed decisions based on potential outcomes from the disease and treatments, the 
accessibility challenges with EHR data necessitated identifying a data source (USRDS) with relevant data 
for kidney diseases before deciding on a use case for this Project – this led to a use case focused on 
patients who had already progressed to ESKD/ESRD to build the training dataset and ML models. Focus 
on ESKD/ESRD is particularly important because it is the only chronic kidney disease stage that is covered 
through CMS Medicare in the U.S. regardless of the age of the patient (that is, under or over 65 years of 
age). 

ESKD/ESRD is associated with exceedingly high morbidity and mortality. Unfortunately, mortality in the first 
90 days of dialysis initiation also remains notably highv,vi. Patients during this vulnerable period of dialysis 
face several changes that place them at risk of adverse health events. For many patients, these changes 
include fluid fluctuations that lead to either volume overload or hypotension, electrolyte derangements 
associated with increased risks of arrhythmia, and loss of residual kidney function. This is related to and 
compounded by the degree and quality of preparation of patients for dialysis, such as whether patient has 
seen a nephrologist recently and whether dialysis is initiated with catheter or fistulaxxiv; however, data on 
preparation for dialysis are lackingxxv. Patients who “crash” into dialysis are more likely to have comorbid 
conditions such as diabetes, coronary artery disease, and congestive heart failurexxvi. 

Although risk models do exist for predicting ESKD/ESRD, mortality in the first 90 days of dialysis is not well 
studiedvi,xxvii. From a patient-centered perspective, a model that predicts mortality in the first 90 days could 
inform patient-provider joint clinical decisions on whether to initiate dialysis and if so, which type of dialysis 
to initiate. Therefore, the specific use case—predicting mortality in the first 90 days of dialysis—was 
selected for the following reasons: 

• The first 90 days following initiation of chronic dialysis represent a high-risk period for 
adverse outcomes, including mortality 

• Studies of the end-stage kidney population have conventionally excluded this time 
period from analyses 

• While the sudden and unplanned start of dialysis is a known risk factor, other factors 
leading to poor outcomes during this early period have not been fully delineatedxxviii,vi 
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• Tools to identify patients at highest risk for poor outcomes during this early period are 
lacking; however, such tools may inform discussions between clinicians and patients 
and their shared decision-making regarding dialysis initiation 

The purpose of this use case is to predict mortality in the first 90 days of dialysis initiation to potentially 
inform shared decision-making between patient and provider. The high-quality training datasets generated 
with this use case could be used to evaluate other relevant outcomes in the future. (For additional 
information, refer to Use Case and Data Source Selection under the Considerations section.) 
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Building a High-Quality Training 
Dataset 
SOURCE DATA  
The source data for building a high-quality training dataset was obtained from the USRDS, the national 
data registry maintained by NIDDK that stores and distributes data on the outcomes and treatments of 
chronic kidney disease (CKD) and ESKD/ESRD population in the U.S. While USRDS data does not include 
complete EHRs for patients suffering from ESKD/ESRD, it has multiple advantages as the source data for 
building a training data for ML:  

• It provides the most comprehensive capture of ESKD/ESRD patients who initiated or 
are currently on dialysis. 

• It links to several databases, including those related to organ transplantation and 
mortality. 

• It incorporates the CMS Form 2728 (the “medical evidence” form) which covers all 
Americans suffering from ESKD/ESRD, so it is a relevant dataset on which to apply 
ML to predict ESKD/ESRD-specific outcomes. 

• As of 2006, CMS Form 2728 (MEDEVID dataset in USRDS) includes some 
information on how well prepared the patient was for dialysis—for example: whether 
the patient was under a nephrologist’s care prior to ESKD/ESRD and for how long. 

• It incorporates CMS claims data for patients before diagnosis with ESKD/ESRD, 
which contains information (such as claims for nephrology care) on how well 
prepared the patient was for dialysis.  

However, there are certain limitations with using the USRDS data for the use case—these include: 

• ESKD/ESRD claims data is only available for the Medicare population (65 and older 
or younger patients diagnosed with ESKD/ESRD; limited CKD claims data is also 
available for patients with Medicare prior to ESKD/ESRD diagnosis).  

• CMS Form 2728 is manually completed by clinical providers; therefore, it is prone to 
data entry errors. 

• CMS Form 2728 does not contain the full range of data relevant to kidney risk. For 
example, Form 2728 has serum creatinine and serum albumin readings but not urine 
creatinine or urine albumin.  

• Sudden changes in serum creatinine levels contain important information about 
kidney function; the data on Form 2728 may not be collected frequently enough to 
detect these changes.  

• USRDS data lack continuous validation of its methods, lack complete comorbidity 
and laboratory data at registration, an initial survival bias in the data due to not 
including patients who die soon after ESKD/ESRD diagnosis, and a lack of accuracy 
of cause-of-death reporting. 

https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/Downloads/CMS2728.pdf
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Notwithstanding the limitations, based on the advantages listed above, a robust training dataset of 
approximately 1.15 million sample size was prepared from the USRDS datasets for applying ML to predict 
mortality in the first 90 days of dialysis. (For additional information, refer to Access to data sources and 
USRDS data limitations and gaps under the Considerations section.) 

HIGH-QUALITY TRAINING DATASET—METHODOLOGY AND RESULTS  
Criteria for a High-Quality Training Dataset 
Building a high-quality training dataset and capturing the details of the methodology used and the lessons 
learned in the process was a primary objective of the project. Towards that objective, the criteria for high 
quality were defined with input from various stakeholders, including the TEP. The criteriaxxix and how they 
were applied to the training dataset are shown in Table 1 below.  

Table 1: Criteria for a High-Quality Training Dataset 

Quality Criteria How addressed in the Training Dataset 
Features cleaned and 
correctly labeled  
(well-labeled) 

• Removed or flagged outliers, erroneous, suspicious, duplicate, and 
inconsistent values  

• Documented how outliers/inconsistencies were addressed across 
USRDS datasets (e.g., inconsistent coding practices, units, 
definitions)  

• Documented and validated any constructed or derived features, to 
ensure that methods/ equations were selected and applied correctly 

Dataset reliable and well 
curated  
(well-structured)  

• Merging and joining done correctly 
• Inclusion and exclusion criteria applied correctly (such as only 

including patients with valid dialysis start date, excluding patients <18, 
etc.) 

• Missing data patterns documented and addressed (Medicare pre-
ESKD/ESRD claims are missing for those who do not qualify for 
Medicare prior to ESKD/ESRD diagnosis) 

• Centering/scaling/standardizing some variables for analysis or 
balancing the data based on the algorithm that was used 

• Excluded operational factors such as location, provider, and masked 
dates when building features 

• Train/test/validation split done such that the training data is 
representative of the rest of the data 

• Data dictionary created  

Use common data 
elements (CDEs) 

• For constructed features, used CDEs 
• For features pulled directly from USRDS dataset, CDEs were based 

on what was used by USRDS 
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Data De-identification 
USRDS provides ‘limited datasets’ with most of the personally identifiable information (PII) removed but 
retaining certain limited PII such as dates and geographic (location) variables. To comply with requirements 
from the study IRB (from UCSF), these two variables were de-identified before use in this Project. USRDS 
data received in sas7bdat format were de-identified as per the Safe Harbor method of the Health Insurance 
Portability and Accountability Act (HIPAA)xxx using a SAS script. All date variables in USRDS—other than 
variables which contain only the year (with no month or day information)—were de-identified by offsetting 
all date fields by a randomly-chosen number specific to each patient included in the USRDS data. For 
location variables, the zip code and county Federal Information Processing Standard Publication (FIPS) 
codes variables were deleted. The accuracy of the date de-identification was validated by comparing a 
sample of the relative date ranges in the de-identified data to the relative date ranges in the source data. 
(For additional information, refer to USRDS data de-identification under the Considerations section.) 

USRDS Datasets and Programming Languages Utilized 
The overall training dataset was prepared using variables in the USRDS data with clinical relevance and 
prognostic value for mortality in the first 90 days after dialysis initiation as determined by kidney disease 
experts from UCSF. The features in the training dataset only include information known on or prior to the 
first day of dialysis. To ensure the training dataset and ML models are broadly applicable, the training 
dataset was created from routinely collected data available in the following USRDS datasets:  

• USRDS core files: MEDEVID (Medical Evidence), PATIENTS, kidney transplant 
waitlist datasets (WAITSEQ_KI, WAITSEQ_KP, and TX), from 2012 through 2017 

• Medicare pre-ESKD/ESRD claims data (for assessing the degree to which a patient 
has been prepared for dialysis) from 2008 through 2017. Further details on the 
datasets and how they map to the use case is shown in Figure 2. Data from the 
special studies in USRDS were not used to prepare the training dataset due to the 
limited number of patients included in those studies.  

Figure 2: USRDS Datasetsxxxi Utilized in the Project for Predicting Mortality 

 

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
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The overall training dataset was created using Rxxxii (version 3.6.3 (2020-02-29) running on x86_64 Linux 
Ubuntu 20.04.1 LTS) and a PostgreSQL database (PostgreSQL 12.3, compiled by gcc (GCC) 4.8.3 
20140911 (Red Hat 4.8.3-9), 64-bit). R was used to pre-process the training dataset (libraries found in 
Appendix Table 1) to prepare for the XGBoost models and Pythonxxxiii (version 3.6.9 running on x86_64 
Linux Ubuntu 20.04.1 LTS) was used to prepare the training dataset (libraries found in Appendix Table 2) 
for the logistic regression and multilayer perceptron models. The code used to build the training dataset 
and the ML models can be found on ONC GitHub, and an Implementation Guide can be found on the project 
site. (For additional information, refer to USRDS data format under the Considerations section.) 

Building the Cohort and Outcome Variable 
The following criteria was applied to the dataset for selecting the cohort for the project: 

• An existing date of first dialysis treatment (n=3,096,526)  
• Death date not before first dialysis treatment (n=3,096,515)  
• Adults (age >=18 years old) (n=3,065,026)  
• Incident year from 2008-2017 (n=1,150,195)  

This project employed supervised ML, which requires the data to have labels representing outcomes that 
ML can predict. The outcome variable for the selected use case is whether a patient died within the first 90 
days of dialysis initiation. The methodology for preparing the overall study dataset and the training and 
testing dataset from the USRDS datasets is shown in Figure 3. 

  

https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
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Figure 3: Preparation of the study cohort data and the training and testing dataset used for 
predicting mortality within 90 days of dialysis in ESKD/ESRD patients 

Pink=Tables from United States Renal Data System (USRDS) database, green=cohort and dataset creation, 
yellow=constructed tables, blue=machine learning methods, white=evaluation. Usrds_id is the identification number 
for a single patient in the USRDS tables 

 
For all patients that met the criteria, a binary variable was constructed to determine if a patient died within 
the first 90 days of dialysis (1 if died, 0 if survived). The distribution of patients who survived (approximately 
92.5%) versus died (approximately 7.5%) in the first 90 days is illustrated in Figure 4 below. (Additional 
information on the distribution of the outcome variable for ML modeling can be found in Class imbalance 
for the outcome variable under the Considerations section.) 

Figure 4: Distribution of patients in the cohort who survived versus died in the first 90 days of 
dialysis 
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Data Profile of the Selected Cohort  

Data profiling and exploratory data analysis performed on the selected cohort of 1,150,195 unique patients 
included assessing the distribution of the patients who survived vs died, by age, sex, and race. The results 
from the analysis are shown in Figure 5, Figure 6, and Figure 7 below.  

Figure 5: Age distribution of patients who survived versus died in the first 90 days after dialysis 
initiation 

 

Figure 6: Sex distribution of patients who survived versus died in the first 90 days after dialysis 
initiation 

 

As shown in Figure 5, patients who died in the first 90 days tend to be older than those who survived. Even 
though there are more males than females in the USRDS data, there is no statistically significant difference 
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in the percentage of males and females who survived versus died in the first 90 days after dialysis initiation 
(Figure 6). Figure 7 shows that Black, American Indian or Alaska Native, Asian, and Native Hawaiian or 
other Pacific Islander patients have a lower percentage of mortality in the first 90 days, which may seem 
counterintuitive as minority patients typically have worse health outcomes than white patients. However, 
Figure 8 shows that, on average, minority patients initiate dialysis at an earlier age than white patients, 
which could explain the relative lower rates of mortality in the 90 days after dialysis initiation for minority 
patients as compared to white patients. Age at the time of ESKD/ESRD diagnosis has been shown to be 
an important predictor of mortalityxxxiv. 

Figure 7: Distribution by race of patients who survived versus died in the first 90 days of dialysis
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Figure 8: Age at ESKD/ESRD diagnosis for patients by race group 

 

The MEDEVID dataset can contain more than one record per patient because the Medical Evidence 
Form/Patient Registration Form is submitted for several reasons, including if a patient changes dialysis 
modality or in the case of a kidney transplant graft failure. To ensure that the MEDEVID record associated 
with the first course of dialysis treatment is used to create the features for the training dataset, the earliest 
MEDEVID record per patient was used (n=1,150,195).  

The Medicare pre-ESKD/ESRD claims datasets are broken down by claim type (inpatient, outpatient, skilled 
nursing unit, home health, and hospice) and year (2008-2017) in the USRDS data. Table 2 shows the 
number of unique patients and the total number of claims for each type of Medicare pre-ESKD/ESRD claim. 
Each unique patient can have multiple claims per type of claim. 

Table 2: Number of unique patients with each type of Medicare Pre-ESKD/ESRD claims 

 Inpatient (IP) Outpatient 
(OP) 

Skilled 
Nursing Unit 

(SN) 

Home 
Health (HH) 

Hospice 
(HS) 

Number of Unique 
Patients 553,704 514,926 140,417 224,272 12,482 

Total Number of 
Claims 2,496,683 15,222,280 592,970 939,751 50,200 
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Feature Selection 

Each feature captures information known about a patient on or prior to the date of dialysis initiation. The 
final structure of the training dataset, which was used to train and test the ML models, consists of 188 
features, and has one observation per patient. Two sets of features were included in the training dataset: 
features taken directly from the USRDS datasets and features that were constructed. The full list of features 
and the methods for constructing certain features are shown in the Data Dictionary (link can be found in the 
Resources section). (For additional information, refer to the Feature selection under the Considerations 
section.) 

Features taken directly from the USRDS data  
These included features from PATIENTS dataset—specifically, demographic variables: age, race, sex, and 
Hispanic ethnicityxxxv. Additionally, kidney disease experts identified variables of clinical relevance from the 
MEDEVID dataset for inclusion in the training dataset. Out of fifteen clinical and laboratory values in the 
MEDEVID dataset, only seven were included in the training dataset—the rest had a high percentage of 
missing values (less than 40 percent) or contained duplicate clinical information, such as methods of 
estimating glomerular filtration rate (GFR). Masked date variables from the MEDEVID dataset, such as 
patient signature date and clinician signature dates, were also excluded from the training dataset as they 
have little to no clinical relevance. The full list of features taken directly from the PATIENTS and the 
MEDEVID dataset are shown in Table 3. 

Features that were constructed 
Detailed method for the features that were constructed from PATIENTS, MEDEVID and Medicare pre-
ESKD/ESRD claims data are provided in the Data Dictionary (link can be found in the Resources section). 
A summary description of the construction method is provided below.  

The transplant waitlist status feature was created using the dialysis start date from the PATIENTS dataset 
and the start and end dates from the kidney transplant waitlist datasets (WAITSEQ_KI, WAITSEQ_KP, and 
TX tables) to determine whether a patient was actively on the kidney transplant waitlist, removed from the 
waitlist, received a kidney transplant, or never on the waitlist prior to dialysis initiation. The time on transplant 
waitlist variable was constructed for the patients who are on the transplant waitlist by subtracting the start 
date from the end date. (For additional information, refer to Kidney transplant patients under the 
Considerations section.) 

The primary cause of renal failure (PDIS) feature was constructed by taking the PDIS variable from the 
PATIENTS dataset and replacing the missing values with the PDIS values from the MEDEVID dataset to 
reduce the number of overall missing values. PDIS was coded as ICD-9 before 2015, as a mixture of ICD-
9 and ICD-10 in 2015-2016, and as ICD-10 post-2016. (The variable CDTYPE indicated the appropriate 
ICD code type.) The PDIS values were mapped from ICD-9 to ICD-10 codes in text format and recoded to 
numeric categories.  

Four features (number of comorbidities marked as: yes, no, unknown, or missing) were built from the 
comorbidity variables in the MEDEVID tables by counting the number of comorbidities—out of 26—for each 
category (yes, no, unknown, or missing). Binary variables were created for each clinical/laboratory feature 
included in the training dataset to indicate whether the original values were missing and whether the original 
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values were out of bounds. The time in dialysis training was constructed by subtracting the end date training 
end date from the training start date variables in MEDEVID.  

For the Medicare pre-ESKD/ESRD claims datasets, the features with clinical relevance were also identified 
by the UCSF clinicians. The total number of claims and total lengths of stay features for each type of claim 
setting (inpatient, outpatient, skilled nursing unit, home health, and hospice) were constructed by counting 
the number of claims per patient and summing the total lengths of stays per type of claim. Binary variables 
were also created to indicate the presence or absence of a claim in each claim setting (IP, OP, HH, HS, 
SN) as well as the presence or absence of any pre-ESKD/ESRD Medicare claim per patient in the study 
cohort. Features that indicate the time elapsed between first and last pre-ESKD/ESRD Medicare claim were 
constructed for each patient across all claims settings and also for each setting (IP, OP, HH, HS, SN) by 
subtracting the date of the first claim from the date of the last claim.  

Diagnosis code groupings were created based on 12 major disease groups that were defined by the UCSF 
clinicians: diabetes, hypertension, heart failure, cardiovascular arterial disease, cerebrovascular disease, 
peripheral arterial disease, kidney failure, pneumonia, malignant neoplasm, alcohol dependence, smoking, 
and opioid dependence. These major disease groups have clinical relevance to ESKD/ESRD and are likely 
to have prognostic value. Through matching the primary diagnosis codexxxvi for each claim with the ranges 
of the ICD-9/10 codes associated with each major disease, variables for inpatient, outpatient, and skilled 
nursing unit settings were created for each primary diagnosis code, total number of claims/total length of 
stay, and type of claim combination (e.g., total number of claims for a hypertension primary diagnosis code 
for outpatient claim, total length of stays for a heart failure diagnosis code for an inpatient claim). A binary 
indicator for whether a patient has any claim in each disease group was also constructed for all claim 
settings. The full list of features constructed from the PATIENTS, MEDEVID, and pre-ESKD/ESRD claims 
datasets are shown in Table 3. (For additional information, refer to Mapping diagnosis codes to diagnosis 
groupings and Cleaning text data under the Considerations section.) 

Table 3: Features Included in the Training Dataset 

USRDS Dataset Category Feature/Feature Category List* 
[Bold: Constructed features] 

PATIENTS Demographics Age, Race, Sex, Hispanic ethnicity 
PATIENTS/Kidney 
Transplant Waitlist 

Prior care Transplant waitlist status, Time on transplant waitlist 

PATIENTS/Medical 
Evidence 
(MEDEVID) 

Renal failure Primary cause of renal failure (PDIS) 

Medical Evidence 
(MEDEVID) 

Clinical variables 
BMI, Weight, Height, Albumin, Hemoglobin, Serum creatinine, 
Glomerular filtration rate (GFR) EPI, Binary indicator for outlier 
clinical values, Binary indicator for missing clinical valuesxxxvii  

Comorbidities 

All 26 comorbidities from CMS Form 2728 (MEDEVID), Number of 
comorbidities marked yes, Number of comorbidities marked no, 
Number of comorbidities marked unknown, Number of 
comorbidities marked missing 

Renal failure Primary disease causing ESKD/ESRD: detailed group 

https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/Downloads/CMS2728.pdf
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USRDS Dataset Category Feature/Feature Category List* 
[Bold: Constructed features] 

Prior care 

Prior nephrology care, Range of nephrology care, Access type, Is 
maturing AVF present, Is maturing AVG present, Received 
exogenous erythropoietin (EPO), EPO range, Under care of kidney 
dietician, Range of diet care 

Patient education 
Informed of transplant options, Reason not informed of transplant 
options, Patient has/will complete training, Self-dialysis training type, 
Time in dialysis training 

Other 
Prior employment status, Current employment status, Insurance type 
(Medicaid, Medicare, Medicare Advantage, Employer Group, VA, 
Other, None), Primary dialysis type, Primary dialysis setting 

Pre-ESKD/ESRD 
Claims 

Prior care 

Total number of claims (IP, OP, HH, HS, SN)xxxviii, Total length of 
stay (IP, OP, HH, HS, SN), Time elapsed between first and last 
claim, Time elapsed between first and last claim (IP, OP, HH, HS, 
SN) 

Other 

Binary indicators for any claims (IP, OP, HH, HS, SN), Whether 
patient has any pre-ESKD/ESRD Medicare claim, Diagnosis code 
groupings (IP, OP, HH, HS, SN) binary indicators, Diagnosis 
code groupings total length of stay (IP, OP, SN), Diagnosis code 
groupings total number of claims (IP, OP, SN) 

  

Handling Outliers 
Kidney disease experts from UCSF based on their clinical experience defined the upper and lower bounds 
for each clinical and laboratory variable so that any values that fall outside these bounds were considered 
impossible. Table 4 contains the upper and lower bounds for the clinical and laboratory value features 
included in the training dataset. A small percentage of values—around 0.5 percent to 2.3 percent—for each 
clinical and laboratory variable were determined to be outliers. These values were subsequently set as 
missing.  

Table 4: Upper and lower bounds for clinical and laboratory variables 

Variable Lower bound Upper bound 
Height (cm) 76 243 
Weight (kg) 20 250 
BMI (kg/m2) 13 75 

Serum Creatinine (mg/dL) 0.5 50 
Serum Albumin (g/dL) 0.5 8 

GFR EPI 1 30 
Hemoglobin (g/dL) 2 18 

 
Binary variables were created for each clinical/laboratory feature to indicate 1) whether the original values 
were missing and 2) whether the original values were out of bounds (the ranges for each values are so 
broad that an outlier is very likely to be an error in coding). The outlier values for each feature were set as 
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missing and a numerical value was imputed, as described in the missing data imputation section. (For 
additional information, refer to Handling outliers and imputing missing data under the Considerations 
section.) 

Partitioning the Data for Training, Validation, and Test Datasets 
Benchmarks in literature for large datasets (1-6 million observations) were used to determine the 
appropriate way to split the data into a training set and a test set. After a model is trained on the training 
data, it is tested on the test set to evaluate whether it can calculate an accurate outcome on data that the 
model has never ‘seen’ before; thus, the test set is created from data that is not part of the training set. Test 
sets reviewed in the machine learning literature ranged from a 10%xxi to 30%xxxix subset of the full dataset. 
We selected a conservative approximate 70% (train), 30% (test) for our train-test split to allow for enough 
data to robustly evaluate our model. (For additional information, refer to Train/test split under the 
Considerations section.) 

To more effectively handle the large data size for modeling, the data were randomly partitioned into 10 
subsets that are representative of the whole. Table 5 shows selected counts for sex (male), race group 
(white), number of missing values (hemoglobin, serum creatinine, serum albumin), total number of patients 
in each subset, and number of patients who died in the first 90 days of dialysis. These partitions have a 
small variation between the subsets for the sample demographic groups and missing values in Table 5, 
which is a measure of confidence that each partition is statistically representative of the whole dataset. (For 
additional information on using random numbers to partition data, refer to Reproducibility under the 
Considerations section.) 

Table 5: Counts of select categories for each data partition 

Subset Number of 
Males 

Number of 
Race 

Group 
(White) 

Number of 
Missing 

Hemoglobin 
Values 

Number of 
Missing 
Serum 

Creatinine 
Values 

Number of 
Missing 
Albumin 
Values 

Total 
Number of 

Patients 

Number of 
Patients 
who Died 

0 65,981 76,535 17,248 2,055 35,925 114,824 8,529 
1 66,131 76,864 17,108 2,051 35,129 115,050 8,773 
2 66,137 76,773 17,240 2,043 35,428 115,044 8,669 
3 66,031 76,846 17,406 1,937 35,100 115,027 8,426 
4 66,282 76,788 16,971 1,917 34,933 114,802 8,549 
5 66,042 76,652 17,285 2,008 35,138 114,936 8,671 
6 66,579 77,002 17,266 1,976 35,219 115,207 8,728 
7 66,332 77,221 17,266 2,035 35,019 115,557 8,695 
8 66,982 76,605 17,027 2,014 34,797 114,925 8,478 
9 66,033 76,751 16,847 1,936 34,973 114,823 8,565 

 

Out of the ten subsets, seven subsets (approx. 70% of the total data) are used for algorithm training and 
validation while the other three subsets (approx. 30% of the total data) remain untouched until evaluating 
the models.  
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Missing Data Imputation 
Missing data are unavoidable in EHR research but have the potential to introduce bias and loss of 
information, leading to invalid conclusions. A variety of methods have been developed to handle missing 
values. We chose multiple imputation, a principled method that is superior to single imputation methods 
because it addresses the uncertainty about missing data by creating several plausible imputed datasets. 
Multiple imputation was done using the ‘mice’ (multiple imputations by chained equationsxl) library (version 
3.13.0) in R and using five imputations to achieve 95% relative efficiencyxli.  

Clinical and laboratory variables with fewer than 40% missing values were included as features in the 
training dataset because multiple imputations are not advised when features contain more than 40% 
missing values xliii . In addition, more imputations would be needed as the fraction of missing data 
increases, which would increase the run

xlii ,

-time. The laboratory and clinical variables with less than 40% 
missing data that were imputed include: height, weight, BMI xliv , serum creatinine, serum albumin, 
hemoglobin, and GFR-EPIxlv.  

The imputation model utilized eight independent variables to inform the imputation: age, sex, race, ethnicity 
as well as the number of comorbidities marked in the Medical Evidence form marked as yes, no, unknown, 
and missing. Only eight variables were chosen to maintain an acceptable runtime—increasing the number 
of independent variables also increases the run-time required for the imputation. These variables were 
chosen as they are demonstrably related to clinical and laboratory values and are missing in only a small 
percentage of cases or not missing at all. BMI and GFR-EPI and variables derived from other imputed 
variables were passively calculated using the imputed height/weight values and imputed serum creatinine 
values, respectively. (For additional information on passive imputation, refer to Handling outliers and 
imputing missing data under the Considerations section.)  

Several imputation methods from the R ‘mice’ package – sample, norm, predictive mean matching (pmm), 
norm.predict, norm.nob, and mean – were tested to approximate run-time and imputation accuracy for the 
training dataset. The “goodness of imputation” tests were performed by using a sample of the dataset of 
40,000 observations and setting 1,000 of it to null, and testing the six imputation methods to impute the 
artificially missing values, and calculating the average error and capturing the run-time of each method. It 
is worthwhile to note that this “goodness of imputation” assessment’s findings may only be generalizable 
to a very specific form of missing data – where all missing values are missing completely at random (i.e., 
probability of missingness has no relationship to any of the observed variable values) – a restrictive special 
case of the broader missing at random assumption tacit in multiple imputation. Out of the methods tested, 
pmm produced imputed values with the highest accuracy (Table 6). Since imputations are resource-
intensive in a dataset with over one million observations, both for generating the imputations and for 
modeling, the run-time of each imputation method was considered alongside accuracy. The pmm method 
was chosen to impute the data as it achieved the highest accuracy out of the methods tested and has an 
acceptable run-time (< 24 hours). 

Table 6: Goodness of imputations assessed through average error using methods in the R ‘mice’ 
package 

Method Height Weight Serum 
Creatinine Albumin GFR 

(EPI) Hemoglobin Duration 
(in sec) 

sample 7.55% 34.38% 57.41% 28.62% 7.57% 19.57% 43 
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Method Height Weight Serum 
Creatinine Albumin GFR 

(EPI) Hemoglobin Duration 
(in sec) 

norm 5.52% 31.87% 62.25% 27.86% 7.39% 18.31% 66 
pmm 5.32% 29.05% 50.13% 27.53% 6.61% 18.61% 72 
norm.predict 3.64% 21.40% 36.25% 20.45% 5.63% 13.22% 64 
norm.nob 5.67% 30.92% 62.45% 28.07% 8.06% 19.07% 65 
mean 5.41% 24.44% 42.29% 20.72% 5.97% 13.71% 50 

 
 
The following design decisions were therefore made to manage resource requirements for the imputed 
datasets: 

• Produce 5 copies of the imputed data, which should achieve a relative efficiency of 
95% (Note: Rubin’s guidelines for achieving a certain relative efficiency were 
developed using simpler parametric models. The effective fraction of missing 
information (γ) has not been established for XGBoost because the mathematical 
properties have not been thoroughly examined.)  

• Impute each partition separately; each partition is representative of the entire dataset 
since randomly partitioning the data ignores the patterns of missingness in the data 

• Store imputations separately from the rest of the training dataset to avoid storing 
duplicates of the data 

• Use the pmm imputation method selected based on comparing multiple methods 
(norm, norm.predict, etc.) in the “goodness of imputation” in the missing values 
assessment described above 

There seems to be little to no consensus in the literature about whether imputing missing values improves 
ML model performance xlvii xlviii. Since some ML models, such as XGBoost can support nonxlvi, , -informatively 
missing values by default, the imputed and the non-imputed datasets were tested in the ML models to 
assess whether imputations improve ML model performance for this training dataset. 
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Building ML Models 
ALGORITHMS SELECTED FOR THE PROJECT 
Three ML algorithms were selected with input from the TEP to provisionally test the training dataset: 
XGBoost, logistic regression, and multilayer perceptron (an artificial neural network implementation). These 
algorithms are a mixture of non-parametric (XGBoost) and parametric (logistic regression and multilayer 
perceptron) models.  

• XGBoost is a popular implementation of gradient boosted decision trees because it 
performs especially well for tabular data, can be applied to a wide array of use cases, 
data types, and desired prediction outcomes (regression vs classification), and can 
handle non-informative randomly-missing values by defaultxlix. Such tree-based 
algorithms learn branch directions for missing values during training, which allows for 
a comparison between models run on non-imputed data versus models run on 
imputed data. 

• Logistic regression is a classic categorization model that can be used to examine the 
association of (categorical or continuous) independent variable(s) with one binary 
dependent variable. However, it requires that the input dataset have no missing 
values. 

• Multilayer perceptron is a class of hierarchical artificial neural network (ANN) that 
consists of at least three layers of nodes—an input layer, a hidden layer and an 
output layer—to carry out the process of ML. They are used for tabular datasets and 
classification prediction problems.  

It is to be noted that the purpose of ML modeling in the Project was to provisionally test the training datasets 
and report the findings while capturing the lessons learned and considerations for future PCOR 
researchers; the purpose was not to compare the algorithms and identify the best performing model for 
clinical deployment (which was out of scope for the Project). (For additional information, refer to Algorithm 
selection for the Project and Limitations of the ML models developed in this Project under the 
Considerations section.) 

ML MODEL DATA PRE-PROCESSING 
ML algorithms have differing requirements for the input training dataset. To prepare the training dataset for 
XGBoost, logistic regression, and multilayer perceptron models, several additional data processing steps 
were performed. The input of all three models must be numeric so all categorical features were one-hot 
encoded into numeric indicators of each factor in the categorical features (e.g., the sex feature was 
converted into 3 columns: sex_1 (male), sex_2 (female), sex_3 (unknown) through one-hot encoding). 
Since XGBoost models take numeric values as input and can handle missing values and class imbalance, 
the XGBoost model can use the training dataset after one-hot encoding the categorical features.  

Logistic regression and multilayer perceptron models have more model input restrictions as compared to 
XGBoost, so the following additional data processing steps were performed to prepare the training dataset 
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for modeling. (For additional information, refer to Class imbalance for the outcome variable, Preprocessing 
data, and Standardization and scaling under the Considerations section.) 

• Logistic regression and multilayer perceptron models cannot inherently handle 
missing values in the input dataset as opposed to a tree-based model like XGBoost 
which learns to handle missing values during training; therefore, the specific numeric 
pre-ESKD/ESRD claims features with a large percentage of missing data (~40%) 
were removed from the training datasetl. Only the binary pre-ESKD/ESRD features, 
which were converted to categorical (i.e., 0=not present, 1=present, 2=missing), were 
retained in the training dataset for these two models. This effectively allowed 
retaining the meaning of whether the data was present or missing for the claims 
features. 

• Removed features that had zero variance (variables that have only a single value) 
from the training dataset because the presence of these variables does not add 
information to the model.li, lii  

• Numeric variables constructed from the pre-ESKD/ESRD Medicare claims with 
missing values (such as claims counts, diagnosis groupings, etc.) were removed and 
only the binary features (such as indicators for claims in each care setting, indicators 
for each diagnosis group, and indicators for pre-ESKD/ESRD claims were retained.  

• Standardized each numeric feature to have a mean of zero and a standard deviation 
of one—the mean of each numeric feature was subtracted from each value and then 
divided by the standard deviation. Standardization allows for comparison of multiple 
features in different units and the penalty (e.g., L1) will be applied more equally 
across the features. Both logistic regression and multilayer perceptron models will 
learn the importance of features better and faster when they aren’t overwhelmed by a 
feature with a much larger range than the others. 

ML MODELING METHODOLOGY AND RESULTS  
Overview of ML Modeling Methodology 
The approach taken to build the training datasets and the ML models using the three algorithms—XGBoost, 
logistic regression and multilayer perceptron—and an overview of the data flow through the ML models and 
the output of those models is shown in Figure 9. The training dataset with the full set of features was split 
into train and test datasets (by creating 10 partitions) at approximately a 70/30 ratio. This train/test split was 
maintained for all of the models to allow for comparison of results. XGBoost models were prepared using 
both the non-imputed dataset containing missing lab values and the imputed dataset whereas logistic 
regression and multilayer perceptron models were prepared using only the imputed datasets as these 
cannot handle missing values. Preprocessing (e.g., one-hot encoding, scaling) as well as class balancing 
was performed in all datasets. Hyperparameters were tuned using the train dataset, and the final model 
was trained on the train dataset and evaluated on the test dataset. For the imputed datasets, the results 
were pooled via averaging per Rubin’s rulesliii (performing analysis on each imputed dataset and averaging 
the parameter estimates to obtain a single estimate so that the variance estimates would reflect the 
appropriate uncertainty surrounding parameter estimates) and plotted.  
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Figure 9: Overview of ML Modeling Methodology 

 

 

eXtreme Gradient Boosting (XGBoost) Model 
Two XGBoost models were built: one for the non-imputed dataset and one for the imputed datasets. The R 
libraries used for XGBoost modeling are shown in Appendix Table 3. The R package xgboost (version 
1.3.2.1liv) was used for this project. Additional documentation for the parameters can be found in the 
XGBoost documentation: https://xgboost.readthedocs.io/en/latest/parameter.html. The parameters and 
their ranges that were selected for tuning, which include the default model values, are shown in Table 7. 
The parameters that were set for the XGBoost models outside of parameter tuning were: 

• Setting scale_pos_weight as 3.5, which is the square root of the ratio of the negative 
class (survived the first 90 days of dialysis) and the positive class (died in the first 90 
days of dialysis). This parameter handles the class imbalance by weighting the 
minority class (died in the first 90 days of dialysis). 

• Setting the number of iterations as 100. 
• Setting early stopping rounds to 15, as evaluated using the highest receiver 

operating characteristic (ROC) AUC. This parameter ends model training if the ROC 
AUC has not increased in 15 iterations. 

Hyperparameters were tuned for the non-imputed dataset with a Bayesian optimization approach, and 5-
fold cross validation was used to identify the optimal hyperparameters for the model. The best performing 
model was evaluated by the selecting the hyperparameter combination with the highest ROC AUClv. 
Hyperparameters were tuned for the imputed datasets using a two-tiered approach. First, Bayesian 

https://xgboost.readthedocs.io/en/latest/parameter.html
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optimization and 5-fold cross validation were used for each imputed dataset to narrow the ranges for the 
hyperparameter space. The highest and lowest values for each hyperparameter over the 5 imputed 
datasetslvi were set as the new ranges to use in a random grid search. From the new hyperparameter 
space, 25 hyperparameter combinations were randomly generated and tested. For each hyperparameter 
combination, the prediction scores for each imputed dataset were averaged to result in one prediction per 
patient per Rubin’s rules. These averaged predictions were used to calculate a ROC AUC for each 
hyperparameter combination. The best performing model was evaluated by the selecting the 
hyperparameter combination with the highest ROC AUC. The optimal hyperparameters for each model are 
shown in Table 7 below. 

Table 7: XGBoost Hyperparameters 

Hyperparameter 
(model parameters) Parameter Description Range of 

values 

Optimal value 
(Non-imputed 

model) 

Optimal value 
(Imputed 
model) 

NRounds Number of learning 
iterations for each model 

10 to 500 497 493 

Eta Learning rate 
.001 to 
.80 

0.057 0.050 

Depth Maximum tree depth in 
generating splits 

2 to 10 6 7 

Alpha Regularization 
parameters for L1-norm 

0 to 9 6.230 7.273 

Lambda Regularization 
parameters for L2-norms 

1 to 9 8.318 8.207 

Gamma Minimum loss for 
generating a split 

0 to 9 5.474 2.937 

Subsample Percent of observations 
sampled 

.2 to 1.0 0.751 0.751 

Colsample_by_tree Percent of features used .3 to 1.0 0.621 0.661 

Min_child_ weight 
The minimum number of 
observations subtending 
from a node in the tree 

1 to 5 2 2 

Max bin 
Controls the maximum 
number of times the 
algorithm can split 

255 to 
1023 

354 935 

 

Using the set of optimal hyperparameters to run the final XGBoost models, the non-imputed XGBoost model 
achieved an AUC of 0.826 on the holdout test dataset and the imputed XGBoost model achieved an AUC 
of 0.827 on the holdout test dataset. The ROC AUC plots are shown in Figure 10. 
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Figure 10: Area under the receiver operating characteristic curve (AUC ROC) Plots for XGBoost 
Models (a) Non-Imputed and (b) Imputed 

The AUC is 0.826 for non-imputed XGBoost model (panel A) and 0.827 for imputed XGBoost model 
(panel B). The dashed diagonal line is the performance for chance prediction. 

  

 
Interpreting which of the features in the training dataset are more important to the XGBoost models can 
be assessed through gain (the relative contribution of the feature to the model). A higher gain implies a 
feature is more important for generating a prediction. The top 10 ranked features for each model are 
shown in Table 8a and Table 8b. For both the imputed and the non-imputed models, the top two features 
are the same—eight of the features in the top 10 ranking are the same between the models. 
 
Table 8a: Feature importance for the non-
imputed XGBoost model 

 Feature Gain 
1 Age 0.145 
2 Total length of inpatient stays 0.074 
3 Time elapsed between first and 

last inpatient claim 
0.050 

4 Received EPO (unknown) 0.037 
5 Has maturing AVF 0.036 
6 Serum Albumin 0.035 
7 Institutionalized 0.027 
8 Serum Creatinine 0.025 
9 Patient documented to be 

medically unfit for transplantation 
0.024 

10 Underlying cause of ESKD 
categorized as other 

0.022 

•  

Table 8b: Feature importance for the imputed 
XGBoost model 

 Feature  Gain 
1 Age 0.158 
2 Total length of inpatient stays 0.079 
3 No maturing AVF 0.044 
4 Received EPO (unknown) 0.036 

5 Patient documented to be unsuitable 
for kidney transplant due to age 

0.030 

6 Under care of kidney dietician 
(unknown) 

0.030 

7 Time elapsed between first and last 
claim 

0.024 

8 Serum Creatinine 0.022 
9 Albumin 0.022 
10 Estimated GFR (eGFR) 0.022 
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Overall, the imputed XGBoost model performed similarly to the non-imputed XGBoost model according to 
the AUCs, confusion matrix findings, and feature importance. The imputations did not significantly improve 
model performance for this specific use case and training dataset when imputing under the models 
assumed in this application. (For additional information, refer to the Missing Data Imputation section as well 
as Using imputed datasets in ML modeling and Imputation assessment under the Considerations section; 
links to the Implementation Guide and ONC GitHub can be found in the Resources section.) 

Both XGBoost models were calibrated using a non-parametric isotonic regressor trained on 66% of the 
testing dataset (subsets 7 and 8, n=230,482), and evaluated on the remaining 33% of the testing dataset 
(subset 9, n=114,823). Calibration (reliability) curves were plotted to reveal each prediction score decile, 
the number of patients that fall into each decile, and the proportion of patients in each decile who actually 
died in the first 90 days following dialysis initiation. The calibration for the XGBoost non-imputed and 
imputed models are shown in Figure 11 and Figure 12. 

Figure 11: Calibration plot for XGBoost non-imputed model predicted risks (a) Predicted risk by 
10% intervals; (b) Predicted risk by decile 
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Figure 12: Calibration plot for XGBoost imputed model predicted risks (a) Predicted risk by 10% 
intervals; (b) Predicted risk by decile 

  

The XGBoost models were also evaluated for sensitivity and specificity at the predicted mortality risk cut-
points of 10%, 20%, 30%, 40%, and 50%, given the overall population risk of 7.5% - the results are shown 
in Table 9a and Table 9b. With increasing risk thresholds, sensitivity progressively decreased, whereas 
specificity remained high and showed slight improvement. The positive likelihood ratio was highest at the 
40% threshold, whereas the negative likelihood ratio was lowest at the 10% threshold.  

Table 9a: Performance across predicted risk thresholds of 10% through 50% of the non-imputed 
model 

Model 
Threshold  Sensitivity  Specificity  Likelihood 

Ratio (+)  
Likelihood 
Ratio (–)  

True 
Positive  

False 
Positive  

True 
Negative  

False 
Negative  

.10 0.69 0.79 3.39 0.38 5,947 21,712 84,546 2,618 

.20 0.39 0.93 5.82 0.64 3,394 7,229 99,029 5,171 

.30 0.19 0.97 9.22 0.81 1,709 2,299 103,959 6,856 

.40 0.12 0.99 12.85 0.88 1,036 1,000 105,258 7,529 

.50 0.04 0.99 12.04 0.95 397 234 106,024 8,168 
 
Table 9b: Performance across predicted risk thresholds of 10% through 50% of the imputed model 

Model 
Threshold  Sensitivity  Specificity  Likelihood 

Ratio (+)  
Likelihood 
Ratio (–)  

True 
Positive  

False 
Positive  

True 
Negative  

False 
Negative  

0.10 0.70 0.79 3.38 0.37 6,024 22,134 84,124 2,541 
0.20 0.42 0.92 5.48 0.62 3,625 8,200 98,058 4,940 
0.30 0.20 0.98 9.15 0.82 1,738 2,357 103,901 6,827 
0.40 0.10 0.99 13.49 0.91 860 791 105,467 7,705 
0.50 0.04 0.99 21.92 0.96 387 219 106,039 8,178 
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Logistic Regression Model 
The logistic regression model was trained using the imputed datasets as inputs as the logistic regression 
model cannot contain missing values. The hyperparameters were tuned using grid search and 5-fold cross 
validation on each imputed dataset to identify to optimal set of hyperparameters as evaluated by the highest 
precision recall (PR) AUC. The logistic regression model and cross validation methods from the Python 
(version 3.6.9) library scikit learnlvii (version 0.24.1) were utilized (Appendix Table 4). 

The hyperparameter ranges and optimal hyperparameters for the logistic regression model are shown in 
Table 10. Class weight was set as ‘balanced’ for the logistic regression model to handle class imbalance.  

Table 10: Logistic regression hyperparameters 

Hyperparameter 
(model parameters) Parameter Description Range of values Optimal 

value 
Number of rounds Number of learning iterations 

for each model 
100, 1000, and 5000 1000 

C Inverse strength of 
regularization (smaller = 
strong penalty) 

-4 to 4 (on logscale) 
 

0.1 

Penalty Type of regularization L1, L2, Elastic Net L2 
 

The final logistic regression model was trained on the training set of data using the optimal hyperparameters 
and resulted in a mean ROC AUC of 0.812 on the holdout test sets (from the 5 imputed datasets). The 
logistic regression ROC AUC plot is shown in Figure 13. 

Figure 13: ROC AUC plot for the final logistic regression model 
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The logistic regression confusion matrix showing the true positives, false positives, true negatives, and false 
negatives for the 5th imputed dataset is shown in Table 11. The logistic regression model does a better job 
of balancing sensitivity and specificity compared to the XGBoost models. The logistic regression precision 
metric shows that this model better predicts patients who died in the first 90 days (true positives) but also 
wrongly predicts more people who died (false positives).  

Table 11: Confusion matrix and evaluation metrics for the logistic regression model 

Model True 
positive 

False 
positive 

True 
negative 

False 
negative 

Sensitivity 
(Recall) 

Specif
icity 

Precision 
(PPV) 

Likelihood 
Ratio 

F1 
Score 

Logistic 
Regression 19,314 89,403 230,164 6,424 0.750 0.720 0.178 2.682 0.287 

 

Feature importance can be assessed for logistic regression models by examining the magnitude of the 
coefficient. A larger magnitude implies the feature is more important for generating a prediction. A positive 
coefficient means the features are more important in generating a positive prediction (died in 90 days); a 
negative coefficient means the features are more important in generating a negative prediction (survived 
the first 90 days). The top 15 ranked features for the logistic regression model and coefficients from the 5th 
imputation dataset are shown in Table 12.  

Table 12: Feature importance for the logistic regression model 

 Feature Coefficient 
1 Has hospice claim 1.011 
2 Under care of kidney dietician (missing) -0.513 
3 Age 0.505 
4 Prior nephrology care (missing) 0.229 
5 Has inpatient claim 0.227 
6 Under care of kidney dietician (unknown) 0.184 
7 Albumin -0.181 
8 Received EPO (unknown) 0.156 
9 Access type (AVF) -0.152 
10 GFR EPI 0.151 
11 Has skilled nursing unit claim 0.145 
12 Has outpatient claim -0.134 
13 Primary disease causing ESKD/ESRD: detailed group (other) 0.120 
14 Patient has/will complete training -0.120 
15 Access type (missing) 0.117 

 
Five feature categories overlap between the XGBoost models and logistic regression model: age, inpatient 
stay claims, received erythropoietin (EPO), albumin, and arteriovenous fistula (AVF).  

• Age: older age is associated with worse survivallviii 
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• Inpatient stay claims: longer inpatient stays are more common in older and sicker 
patients and has been associated with mortalitylix 

• Received EPO: EPO hormone is produced by kidneys when it senses low oxygen 
levels in the blood. It triggers bone marrow to produce more red blood cells which 
raises blood oxygen. Since patients with kidney failure produce less EPO, EPO can 
be administered by a clinicianlx. Patients on EPO typically have advanced chronic 
kidney disease (CKD) at the time of dialysis and are under the care of a nephrologist.  

• Albumin: Albumin reflects the patient’s overall health status (including nutrition and 
inflammation). The risk of death is increased by poor serum albumin levels reflecting 
inadequate nutritionlxi. 

• AVF: The presence of an AVF indicates prior nephrology care. Hemodialysis through 
AVF access is associated with reduced mortalitylxii. 

Multilayer Perceptron (MLP) Model 
The selection of MLP for this Project was based on discussions with TEP members. We specifically 
engaged one TEP member (Dr. Peter Chang) who provided guidance on the selection and implementation 
of a simple neural network as Dr. Chang hosts publicly available codelxiii to learn how to run a docker 
container on an Amazon Web Services (AWS) instance for neural networks using medical data. Dr. Chang's 
code was used as a template for the neural network implementation. Given the purpose of modeling in this 
Project is to provisionally test the training datasets, a simple neural network algorithm (MLP) was chosen 
for the predicting mortality use case. MLP does not require intense computation and would provide an 
example of applying a neural network for the training dataset. A docker container (similar to running code 
in a virtual machine so that it is easy to replicate on any computer or operating system) was used to run the 
MLP model in the AWS instance.  

The multilayer perceptron model was trained and evaluated using the imputed datasets as inputs to a neural 
network model cannot contain missing valueslxiv. The hyperparameters were tuned using grid search 5-fold 
cross validation on each imputed dataset to identify the optimal set of hyperparameters as evaluated by the 
highest precision-recall AUC plots (PR AUC). The multilayer perceptron model was trained using the python 
(version 3.6.9) tensorflow (version 2.4.1lxv) library and cross validation methods were from the Python 
(version 3.6.9) library scikit learnlvii (version 0.24.1). (See Appendix Table 5 for additional information.) 

The hyperparameter ranges and optimal hyperparameters for the multilayer perceptron model are shown 
in Table 13. TEP expertise was used to narrow down the ranges of hyperparameters tuned (the number of 
neurons, the kernel regularizer, epochs, and batch size) as testing all combinations of hyperparameters 
considerably increased run time for hyperparameter tuning. Early stopping callback was based on the 
maximum PR AUC and set to a patience of 10. 

Table 13: Multilayer perceptron hyperparameters 

Hyperparameter 
(model parameters) Parameter Description Range of values Optimal 

value 
Neurons Number of neurons in the dense layer 16, 32, 64, 128 16 

Kernel regularizer Regularization for the nodes in each 
dense layer 

L2 L2 
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Hyperparameter 
(model parameters) Parameter Description Range of values Optimal 

value 

Dropout rate Setting for the dropout layer to avoid 
overfitting 

0.1, 0.2, 04, 0.5, 0.6 0.2 

Learning rate Rate for the optimization algorithm to 
reach the local minima 

1e-2, 1e-3, 1e-4, 2e-4 
 

0.0002 

Epochs Number of iterations over the full dataset 10, 20 10 
Batch size Number of samples per gradient update 512, 256 256 

Optimizer 
Algorithm used to update the model 
based on the data it sees and its loss 
function for optimizing the model 

Adam, SGD (stochastic 
gradient descent), 
Adamax 

Adam 

Activation Activation function for the dense layer Linear, relu, sigmoid, tanh Relu 
Initial weights Weights based on data imbalance to help 

model converge faster 
None, bias=-2.514 
log(died_count/ 
survived_count) 

None 

Class weight Weights based on the imbalanced classes 
to apply to the loss function when training 

Survived=1 
Died = [6.68, 1, 5, 10, 20] 

Survived = 1 
Died = 10 

Layers Number of dense layers to extract 
representations from the data 

[1, 2] 2 

 

The set of optimal hyperparameters were used to train the final multilayer perceptron model which resulted 
in a mean (ROC) AUC of 0.812 on the holdout test dataset from each of the 5 imputed datasets. The 
multilayer perceptron ROC AUC plot is shown in Figure 14. 

Figure 14: ROC AUC plot for the final multilayer perceptron model 
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The multilayer perceptron confusion matrix showing the true positives, false positives, true negatives, and 
false negatives for the 5th set of imputed data (an arbitrarily-chosen subset whose findings should reflect 
results across all imputations) is shown in Table 14. The multilayer perceptron model performs similarly to 
the logistic regression model—it balances sensitivity and specificity and better predicts patients who died 
in the first 90 days (true positives) but also wrongly predicts more people who died (false positives) 
compared to the XGBoost models. 

Table 14: Confusion matrix and evaluation metrics for the multilayer perceptron model 

Model True 
positive 

False 
positive 

True 
negative 

False 
negative 

Sensitivity 
(Recall) Specificity Precision 

(PPV) 
Likelihood 

Ratio 
F1 

Score 
Multilayer 
Perceptron 18,474 78,948 240,619 7,264 0.718 0.753 0.190 2.905 0.300 

RISK CATEGORIZATION 
Risk categorizations constructed from model prediction scores are oftentimes more helpful to clinicians, 
rather than the binary died or survived predictions. For the project, prediction score categories were 
constructed for the non-imputed XGBoost, logistic regression, and multilayer perceptron models by using 
the prediction score for each patient in the test datasets. (The non-calibrated XGBoost model was used for 
risk categories.) The model prediction scores, which range from 0-0.99, were stratified by decile. Table 15a, 
Table 15b, and Table 15c show the prediction score categories (by decile), the number of patients that fall 
into each category, and the proportion of patients in each category who actually died in the first 90 days 
following dialysis initiation. For example: XGBoost model predicted a score of 0.8-0.89 for 1,457 patients; 
of these patients, the proportion of patients who actually died within the first 90 days of dialysis was 0.575 
(or 57.5%). The trends from all three models in Table 15a, Table 15b, and Table 15c below support the 
findings from the confusion matrices—the models predict survival more accurately than death. 

Table 15a: XGBoost risk 
categorization 

Prediction 
Score 

Category 

Count in 
Category 

Proportion 
of patients 
(actually 

died in 90) 
0-0.09 148,693 0.011 

0.1-0.19 75,410 0.043 
0.2-0.29 44,315 0.084 
0.3-0.39 29,430 0.138 
0.4-0.49 20,283 0.192 
0.5-0.59 13,228 0.257 
0.6-0.69 7,967 0.336 
0.7-0.79 4,098 0.446 
0.8-0.89 1,457 0.575 
0.9-0.99 417 0.842 •  

Table 15b: Logistic regression 
risk categorization 

Prediction 
Score 

Category 

Count in 
Category 

Proportion 
of patients 
(actually 

died in 90) 
0-0.09 43,355 0.004 

0.1-0.19 56,118 0.011 
0.2-0.29 51,660 0.022 
0.3-0.39 44,382 0.040 
0.4-0.49 38,132 0.064 
0.5-0.59 33,063 0.097 
0.6-0.69 29,209 0.138 
0.7-0.79 24,319 0.195 
0.8-0.89 17,702 0.274 
0.9-0.99 7,337 0.381 •  

Table 15c: Multilayer 
perceptron risk categorization 

Prediction 
Score 

Category 

Count in 
Category 

Proportion 
of patients 
(actually 

died in 90) 
0-0.09 55,558 0.004 

0.1-0.19 68,189 0.014 
0.2-0.29 45,782 0.027 
0.3-0.39 37,633 0.048 
0.4-0.49 33,200 0.072 
0.5-0.59 30,138 0.102 
0.6-0.69 30,025 0.146 
0.7-0.79 32,336 0.226 
0.8-0.89 11,643 0.341 
0.9-0.99 801 0.454 •  
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As per kidney disease domain experts, these decile prediction score categories may be further grouped 
into risk categories such as low, medium, high rather than the binary died or survived predictions. 
Converting a specific prediction score to a risk category (low, medium, high) conveys a relative risk of dying 
in the first 90 days after dialysis initiation instead of an outright prediction and can yield improved clinical 
interpretability and meaning for providers and patients. However, for clinical validity and acceptability of 
such risk categories, input from clinical stakeholders (providers and patients) will be needed to establish 
various thresholds to define clinically useful categories. 

FAIRNESS ASSESSMENT 
ML models can perform differently for different categories of patients. The performance of the non-imputed 
XGBoost, logistic regression, and multilayer perceptron models were assessed for fairness using area 
under the Receiver-Operator Characteristic curve (AUC), or how well the model performs for each category 
of interest (demographics— age, race, sex—as well as initial dialysis modality). (The non-calibrated 
XGBoost model was used so that the fairness assessment was performed on the same test dataset for all 
three models.) Since age is a continuous variable, age was binned into the following categories based on 
UCSF clinician input and an example from the literaturelxvi: 18-25, 26-35, 36-45, 46-55, 56-65, 66-75, 76-
85, 86+. The USRDS predefined categories for race, sex, and dialysis modality were used for the fairness 
assessment. Fairness was assessed by calculating the ROC AUC for each category (fairness for the logistic 
regression and multilayer perceptron models was calculated using the 5th set of imputed data—an 
arbitrarily-chosen subset whose values should reflect results across all imputations) and are shown in Table 
16a, Table 16b, Table 16c, and Table 16d. The XGBoost model fairness assessment AUC ranged between 
0.798-0.840 for the categories evaluated whereas logistic regression and multilayer perceptron models 
show that the AUC decreases as age increases. (For additional information, refer to Fairness assessment 
under the Considerations section.) 

Table 16a: Fairness assessment age categories 

Category XGB 
AUC 

LR 
AUC 

MLP 
AUC Count 

18-25 0.829 0.831 0.844 4,340 
26-35 0.823 0.823 0.833 12,774 
36-45 0.828 0.827 0.831 26,120 
46-55 0.830 0.803 0.809 53,564 
56-65 0.824 0.788 0.788 85,076 
66-75 0.825 0.767 0.766 86,140 
76-85 0.822 0.739 0.737 62,193 
86+ 0.830 0.724 0.716 15,098 •  

Table 16b: Fairness assessment race 

Category XGB 
AUC 

LR 
AUC 

MLP 
AUC Count 

White 0.826 0.802 0.802 230,577 
Black 0.825 0.812 0.813 93,560 
American 
Indian/ Alaska 
Native 

0.798 0.805 0.806 3,225 

Asian 0.828 0.837 0.835 12,965 
Native 
Hawaiian or 
Pacific 
Islander 

0.825 0.809 0.818 3,776 

Other or 
Multiracial 0.821 0.776 0.791 881 

Unknown 0.825 0.729 0.721 321 •  
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Table 16c: Fairness assessment dialysis modality 

Category XGB 
AUC 

LR 
AUC 

MLP 
AUC Count 

Hemodialysis 0.825 0.802 0.802 310,415 
CCPD 
(continuous 
cycling 
peritoneal 
dialysis) 

0.819 0.831 0.836 15,082 

CAPD 
(continuous 
ambulatory 
peritoneal 
dialysis) 

0.829 0.842 0.848 13,295 

Other 0.815 0.983 0.986 77 
NA 0.840 0.726 0.750 6,436 •  

Table 16d: Fairness assessment sex 

Category XGB 
AUC 

LR 
AUC 

MLP 
AUC Count 

Male 0.826 0.816 0.816 198,347 
Female 0.825 0.803 0.803 146,957 •  
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Considerations for Applying ML to 
PCOR and Health Care Use Cases 
Key activities of this Project focused on applying ML to PCOR and health care included selecting a use 
case, accessing data relevant to the use case, building high-quality training datasets and provisionally 
testing the training datasets using ML algorithms to build ML models that would address the selected use 
case. To address the goal of this Project to generate foundational outputs for enhancing PCOR 
infrastructure, valuable lessons-learned and best practices identified throughout the course of this Project 
were captured based on discussions with the TEP, IA and other stakeholders/experts and experiences of 
the Project Team. These are compiled in this Considerations section for future researchers to learn from 
and take into account as they apply ML to PCOR. 

USE CASE AND DATA SOURCE SELECTION  
For applying ML in PCOR and health care, clinically compelling patient centric use cases should be 
identified first rather than tailoring a use case to an existing, easily accessible (open) dataset. From a patient 
centered perspective, ML is particularly useful to predict potential outcomes prior to decisions that patients, 
in coordination with their providers, must make regarding whether to undergo treatment, which treatment 
to choose, and how to address potential adverse events once a treatment choice is made. Key to 
implementing ML for such prediction use cases is access to EHR and clinical research data that has been 
already collected through federal funds and stored in various federally sponsored repositories. 

At the initiation of this Project, upstream kidney disease use cases were considered based on discussions 
with the TEP, which included a patient advocate, who emphasized the need to move PCOR to focus on 
research prior to being diagnosed with kidney disease or earlier in kidney disease progression. Such use 
cases require access to EHR data, which offer high granular information on relevant features at the system-
, provider- and patient-level. It is to be noted that EHR data are particularly useful for a broad range of use 
cases focused on kidney disease. However, the Project Team faced the following challenges in trying to 
access EHR data stored in multiple federal and private repositories in a timely manner to address an 
upstream kidney disease use case within the two-year project period: 

• Data security concerns surrounding patient privacy and confidentiality 
• Contractual agreements with health systems that incur additional costs 
• Requirement for approval by ethical and other regulatory bodies, including the 

Institutional Review Boards (IRBs), and the differing processes for such approvals 
across health systems and repositories 

Therefore, for this project, the data source (USRDS) was selected before identifying the use case – 
predicting mortality in the first 90 days of dialysis. This use case focuses on the very end-stages of kidney 
disease (ESKD/ESRD); however, most patients with kidney disease suffer from cardiovascular-related 
death and experience other relevant adverse outcomes prior to reaching ESKD/ESRD. Future projects 
could focus on these upstream events. 
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Accessing data from USRDS required submission of approval from an IRB – this was accomplished as the 
Project Team was composed of clinical experts from UCSF, and as an academic health research entity, 
the UCSF IRB was able to serve as the ‘IRB of record’ for this project. This raises an important consideration 
for future ML researchers – partnership with an entity that has its own IRB or approval from a commercial 
IRB, such as the WIRB-Copernicus Group, (WCG) IRB (noting additional costs for such IRBs) will be 
required to obtain EHR or clinical data for applying ML to PCOR focused use cases.  

BUILDING THE TRAINING DATASET 
Access to data sources 
AI/ML applications have the distinct advantage of being able to utilize large amounts of real-world clinical 
data to support evidence-based decisions in clinical settings; however, access to such data is pivotal for 
realizing the promise of AI. As described in the Kidney Disease Use Case for the Project and Use Case 
and Data Source Selection sections, the Project encountered some challenges while trying to access EHR 
data for considering upstream kidney disease use cases. This raised key issues regarding accessing 
clinical data, including: 

• The requirement of obtaining approval for accessing EHR data in a timely manner 
from an IRB to comply with human subjects protection regulations such that sufficient 
time remained to prepare the training datasets and ML models within the two-year 
timeframe of the project  

• As noted earlier in the Use Case and Data Source Selection section, regulatory 
entities such IRBs differ in their stipulations and processes for accessing and 
handling EHR and other patient data. Stipulations may include the requirement that 
the data be de-identified of HIPAA identifiers prior to research use, as was the case 
for this Project, where the limited dataset obtained from USRDS were de-identified to 
include random-shift masking of dates and deletion of geographical variables (for 
additional information, refer to USRDS data de-identification under the 
Considerations section.)  

• Integration of EHR data from multiple data sources (as supported fully by USRDS per 
researchers’ IRB of record, see next bullet) increases the power of AI/ML 
applications for clinical decisions; however, each data source may impose differing 
access requirements limiting the number of data sources and precluding the study of 
certain clinical use cases  

• USRDS facilitates the integration of their datasets with externally sourced 
datasetslxvii; however, this requires providing USRDS with identifier variables, such as 
name, social security number, date of birth, sex and date of death, if available. 
Accessing data with such key patient identifiers is a greater challenge with many 
repositories and requires strong justification of the need for such datasets in order to 
meet both the source-repository and IRB approval requirements.  

Future PCOR researchers should take into consideration these factors and explore the feasibility of use 
cases that can be studied especially recognizing the timeframe for their projects. 

https://www.wcgirb.com/
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USRDS data de-identification  
USRDS data is distributed as limited datasets (i.e., certain personally identifiable information (PII) are 
retained – this includes dates and geographic (location) variables). However, due to the requirement from 
the UCSF IRB (the IRB of record) for using the data for the Project, these variables were de-identified in 
accordance with the Safe Harbor method in the Health Insurance Portability and Accountability Act (HIPAA) 
guidance for de-identifying PII/protected health information (PHI) as follows: 

• Dates were masked by offsetting each date by a randomly-chosen number specific to 
an individual. Example: if first ESKD/ESRD service was April 5, 2016, this date was 
transformed to April 5, 2016 plus 60 days (or June 5, 2016) when a random offset of 
+60 days was chosen for that individual; masking is effective when this offset differs 
across individuals and is randomly selected, usually within a known range (e.g., -180 
to +180 days). Dates used as features in the training datasets were derived from 
these masked dates. 

• Geographic variables (i.e., zip codes, FIPS codes, etc.) were removed. An alternative 
method for future researchers looking to de-identify patient location data while 
retaining higher level location information would be to retain just the first three digits 
of each zip code to represent larger geographic variables as per HIPAA guidance 
and use Census Bureau data to ensure the population for each geographic unit is 
greater than 200,000. Where a geographic unit has a population less than 200,000, 
the units should be combined into a 000 category (Note: when aggregating units 
arbitrarily due to low counts, a more effective use of geographic information that is 
subject to aggregation/masking/removal is to first link in the key features for the most 
granular geographic units – for example, Census tract’s specific measures of social 
determinants of health – such that it carries along with each individual’s EHR or other 
clinical/administrative data yet does not engender the same PII/PHI disclosure risk as 
does the original data) 

For use cases that require location as a feature such as for social determinants of health (SDOH), future 
researchers may consider merging in zip codes found in the USRDS dataset with other variables of interest 
from external datasets, such as area deprivation index (ADI).  

As noted, complete de-identification of the limited datasets obtained from USRDS was performed to comply 
with UCSF IRB requirements. Not all IRBs may require that PII/PHI be de-identified prior to use in a Project. 
Future researchers may consider working with their IRB to ensure that relevant identifier variables for a 
specific use case are retained in the source dataset used for building the training datasets and ML models. 
Future researchers might also consider using privacy-preserving machine learning techniques that are 
currently being actively researched, or taking advantage of infrastructure resulting from planned PCOR 
Trust Fund projects in progress, to manage data privacy and protect health information risks. 

USRDS data limitations and gaps 
The training datasets for this Project was created from routinely collected data available in the following 
USRDS datasets:  

• USRDS core files: MEDEVID (Medical Evidence), PATIENTS, kidney transplant 
waitlist datasets (WAITSEQ_KI, WAITSEQ_KP, and TX), from 2012 through 2017 

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://aspe.hhs.gov/using-machine-learning-techniques
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• Medicare pre-ESKD/ESRD claims data (for assessing the degree to which a patient 
has been prepared for dialysis) from 2008 through 2017 

While the USRDS data provides the most comprehensive registry of data from CKD and ESKD/ESRD 
patients in the U.S., some of the limitations and gaps in the USRDS data identified by the Project Team are 
listed below for future researchers to consider when applying ML to other kidney diseases:  

• The USRDS database captures data primarily on a selected population – those with 
ESKD/ESRD. Although some data are available for patients with pre-dialysis chronic 
kidney disease, such as clinical parameters and health care utilization, these data 
are limited to the Medicare population (aged 65 and older) and do not contain several 
other key clinical and PCOR variables that may be of interest to investigators. 

• Longitudinal laboratory measures are not routinely collected in USRDS (i.e., lab 
values over time); therefore, the training dataset developed for this Project does not 
include this important set of information clinicians typically use to evaluate patient 
health and inform interventions. Merging USRDS data with EHRs would help to 
obtain the more comprehensive and longitudinal view of a patient’s health as they 
approach ESKD/ESRD. Other point-in-time laboratory variables recommended by 
project stakeholders to capture in the USRDS data include urine creatinine, 
phosphorus, calcium, and C-reactive protein (CRP).  

• Racial-ethnic and socioeconomic-based health disparities in chronic kidney disease, 
including ESKD/ESRD, are well-recognized; however, data on patient-level 
socioeconomic variables and social determinants of health are somewhat limited 
within the USRDS database, thus could only be included through additional efforts by 
researchers who have resources needed to conduct a merged data request 
(https://www.usrds.org/for-researchers/merged-data-requests/).  

• While USRDS data is the national registry for CKD and ESKD/ESRD, it does not 
capture certain subsets of patients (e.g., undocumented immigrants). 

• An administrative limitation of ESKD/ESRD claims data is that patients do not quality 
for Medicare coverage on the basis of ESKD/ESRD diagnosis until after the 90 days 
of dialysis, and therefore do not have claims data for the first 90 days – the focus of 
the time period for the use case selected for this Project. Because of this 
administrative limitation, the Project did not use any features (variables), including 
death dates, from Medicare claims data after diagnosis with ESKD/ESRD. This 
limitation is also why USRDS primarily relies on death dates from CMS Form 2746 
(ESKD/ESRD Death Notification) and supplements these death dates with data from 
other sources such as CMS enrollment dataset, CROWNWeb Events, etc. The 
hierarchy for constructing the death date for the PATIENTS dataset is available in the 
USRDS Researcher’s Guide. The ESKD/ESRD Death Notification Form is required 
for all patients with an ESKD/ESRD diagnosis who die regardless of whether they are 
eligible for Medicare coveragelxviii and is not considered part of CMS claims 
data. According to USRDS documentation, the ESKD/ESRD Death Notification Form 
captures the death date of over 99% of all patients who die. 

https://www.usrds.org/for-researchers/merged-data-requests/
https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/Downloads/CMS2746.pdf
https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/Downloads/CMS2746.pdf
https://www.usrds.org/media/1286/2019-researcher-s-guide.pdf#page=35
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• The structure of the pre-ESKD/ESRD Medicare claims data can differ by incident 
year and claim type, so comparing the different schemas for the pre-ESRD claims is 
an important consideration to accurately construct one unified file for the pre-ESRD 
claims.  

• The MEDEVID table provides two methods for documenting patient comorbidities:  
o A list of comorbidity categorical variables (the variables COMO_DIA, 

COMO_CHF, etc.) and  
o A string that concatenates all the comorbidities marked as ‘yes’ in CMS Form 

2728 (the COMORBID variable). Unfortunately, these two representations do not 
always agree perfectly. The training dataset created for this project utilized the 
list of categorical variables as the source for comorbidities. Future work could be 
performed to reconcile these two sources of comorbidity data.  

• The data in USRDS are not mapped to common data elements (CDEs) standards 
such as the Systematized Nomenclature of Medicine (SNOMED) or Logical 
Observation Identifiers Names and Codes (LOINC) or to common data models 
(CDMs), such as Observational Medical Outcomes Partnership (OMOP) or the HL7 
Reference Information Model. While one of the criteria for developing a high-quality 
training dataset is to use CDEs and CDMs, the training datasets prepared in this 
Project used the data elements and mappings that already existed in the USRDS 
core files (MEDEVID and PATIENTS) and Medicare pre-ESKD/ESRD claims data. 
Users of the USRDS data must be aware of the various caveats noted in the USRDS 
Researcher’s Guide in developing an analytical cohorts nested from the USRDS 
dataset to ensure selection of appropriate analytical approaches and interpretation of 
results  

USRDS data format 
Each MEDEVID record is associated with a patient’s USRDS ID. However, multiple records/entries can 
exist for a single patient in the MEDEVID table as a form is resubmitted when a patient regains Medicare 
eligibility (i.e., due to transplant failures, etc.). Per the USRDS Researcher's Guide, the first MEDEVID entry 
should be selected for analysis. The MEDEVID table that was received for the project was exported from 
SAS as a .sas7bdat file and retains the order of patient records. However, the operations associated with 
importing a .sas7bdat file directly into a SQL database does not guarantee that the order of rows will be 
preserved. This was addressed in the project by first converting all .sas7bdat files received from USRDS 
to .csv format before importing the files into R for analysis (deduplication, cohort selection) and then saving 
the data to the SQL (PostgreSQL) database. 

Additionally, the conversion to .csv allowed removing complex data structures and metadata stored in the 
.sas7bdat files (e.g., categorical variable encodings that are also documented in the USRDS Researchers 
Guide Appendix B and C) that cannot be imported into R or a PostgreSQL table.  

Note: For other use cases, especially those requiring a longitudinal dataset, the multiple MEDEVID records 
per patient present in the MEDEVID table may need to be retained. Decisions on how to handle the 
duplicated data should be made with the proposed use case in mind. 

https://www.snomed.org/
https://loinc.org/
https://www.ohdsi.org/data-standardization/the-common-data-model/
http://www.hl7.org/implement/standards/rim.cfm
http://www.hl7.org/implement/standards/rim.cfm
https://www.usrds.org/media/1286/2019-researcher-s-guide.pdf#page=35
https://www.usrds.org/media/1286/2019-researcher-s-guide.pdf#page=35
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Feature selection  
Input from clinical experts is essential to ensure that the selection of the features for the training dataset is 
driven by a strong clinical understanding of the data and that variables that are operational factorslxix or 
‘nuisance variables’ are excluded from the training dataset. Examples of operational factors include the 
date the physician signed the Medical Evidence Form, which reflects operational status and not a patient’s 
health status. Operational factors in the dataset can lead to two issues:  

• Overfitting of the data, which should be managed by ensuring that the test dataset is 
representative of the entire dataset. 

• Under-specifying the ML model (i.e., not being able to generalize outside of the 
source data), which will be managed by documenting variables that may be 
operational in nature vs clinical and measuring the extent that these variables 
contribute to the model. This can be performed as follows: 
o Use features identified as operational factors to predict the outcome variable and 

assess a baseline AUC 
o Use features labeled as operational factors to predict clinical features as a 

measure of impact 

Operational factors were removed from the training datasets prepared in this Project. Working with 
clinicians throughout the feature selection process is crucial to determining that the final list of features is 
relevant for the use case being considered. 

Mapping diagnosis codes to diagnosis groupings  
Each pre-ESKD/ESRD Medicare claim has an ICD-9/ICD-10 primary diagnosis code; these should be 
converted with clinician’s input into relevant disease groupings that can be used to create features with 
predictive value. It is difficult find a one-size-fits-all method for mapping diagnosis codes to meaningful 
categories as the categories are highly dependent on the use case. Future researchers may want to 
consider alternative disease groupings that are informed by clinicians and other health-care researchers. 

Cleaning text data 
When cleaning text data for pattern matching, non-ASCII characters (e.g., umlauts or accents from foreign 
names of diseases) in the CMS source data should be removed or converted to ASCII in order to utilize 
certain functions used for pattern matching in text (e.g., the grep library in R) 

Handling outliers and imputing missing data  
Although the data from USRDS is already curated, basic patient measures such as height and weight, and 
laboratory measures such as serum creatinine, albumin, and hemoglobin, contained unrealistic values. 
Clinicians should be engaged to determine which laboratory values are most vital in predicting outcomes 
and to define the minimum and maximum bounds of the values for each these measures.  

Missing data are unavoidable in EHRs and other real-world data but have the potential to introduce bias 
and loss of information, leading to invalid conclusions. The multiple imputations by chained equations 
(MICE) package was used to handle missing values in this project. (Other imputation packages, such as 
the multiple imputation (MI) and Amelias package, can also be used for the imputations; specialized 
applications, such as comparative effectiveness studies or probability-sampling-based cohorts in machine 

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/grep
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learning, could leverage correspondingly specializes packages that accommodate the specific context – 
such as multiple imputation accommodate missing exposure or confounder values of propensity-score-
matched cohorts, as done by https://www.rdocumentation.org/packages/MatchThem/versions/0.8.1.) In 
general, the multiple imputation method chosen should balance the trade-off between accuracy and run-
time, especially for large datasets (greater than one million observations). If using multiple imputations by 
chained equations (MICE) package, multiple methods should be tested to determine accuracy and run time. 
For example, predictive mean matching (PMM) has the advantage of always imputing within the upper and 
lower bound of the variable whereas the norm method does not. However, in an older version of the MICE 
library, PMM was impractical for large datasets since PMM run-time scaled more than linearly with dataset 
size whereas norm scaled approximately linearly. An updated MICE package was released in November 
2020 which improved the run-time for the PMM method so that it is comparable to the ‘norm’ method. 
Therefore, the imputation method in this project was updated from norm to PMM. 

For derived variables such as BMI (from height/weight), or eGFR (from demographic characteristics) that 
were imputed, future researchers should note that these are typically imputed more efficiently and without 
severe inconsistencies when ‘passive imputation’ is employed. However, the literature on this topic is 
complex; handling derived variables via passive imputation through FCS (fully conditional specification) 
models can yield biased estimates if the imputation model is not compatible with the substantive modellxx. 
Because the approach followed in this study may not be applicable to other use cases, the practitioner is 
advised to follow published guidelines for constructing and checking imputation modelslxxi. 

Reproducibility 
A seed should be set whenever running code that uses any kind of sampling method (e.g., MICE), in order 
for the code to be reproducible by other researchers. If a seed is not set prior to running the sampling 
function, the code will not produce the same results when it is rerun. 

Kidney transplant patients 
Kidney transplant events occurred in 0.5% of patients in the study cohort of 1,150,195. Since only a small 
percent of patients had the competing outcome of kidney transplant, there is likely only a small effect of 
these patients on the outcome estimates. Future work could exclude these patients from the analysis 
(censoring patients) or explore the effect of the competing outcome (kidney transplant versus whether a 
patient dies in the first 90 days after dialysis initiation) on estimates using methods that account for this 
event, at least within the subset eligible for transplant per available data (a key patient-centered question 
for joint patient-clinician decision making). For example, a Fine-Graylxxii

lxxiii

lxxiv

 competing risk model could be 
applied to the predictors selected by the ML model. A competing risk regression model (e.g., cmprsk::crr in 
R) could be appropriate when gauging risk by a sub-distribution hazard, as it corresponds with the non-
parametric cumulative incidence function (preferred in clinical research to the Kaplan-Meier estimate ), 
while other methods may be of more of interest if examining a cause-specific hazard when the cause of 
interest is subject to a competing risk ,lxxv; this latter situation doesn’t assume the cohort is ”invulnerable” 
to competing risks, instead quantifying risk of ‘targeted‘ event for subjects also capable of experiencing a 
competing event (continuing the example above, cause-specific hazard of death among those eligible for a 
transplant when transplant is viewed as a competing risk for mortality-during-dialysis in transplant-eligible 
ESKD/ESRD patients). 

https://www.rdocumentation.org/packages/MatchThem/versions/0.8.1
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Train/test split 
The TEP recommended considering an alternative method to using a train/test split called bootstrapping to 
“simulate” an internal test set instead of using a train/test split. (Similarly, k-fold cross-validation on the 
entire dataset can be used to simulate internal test sets.) Although these approaches would allow for more 
data to be used in model training, the data used for this project seems sufficiently large (N > 1 million 
observations) to use a fixed test set. Future researchers working with a smaller dataset could consider 
using a bootstrapping approach or an overarching k-fold cross validation approach to increase the size of 
the training data for ML. 

BUILDING ML MODELS  
Algorithm selection for the Project  
XGBoost was initially chosen as the model due to its ability to model with sparse data/missing values, as 
well as its performance over other algorithms in clinical use cases. The TEP recommended considering 
different classes of algorithms, such as parametric algorithms (logistic regression) as well as the non-
parametric algorithms (XGBoost) and implementing a neural network. Thus, a logistic regression model 
and a multilayer perceptron model (an artificial neural network) were selected for modeling in addition to 
XGBoost. Some of the general considerations for selecting an algorithm include characteristics of the 
training dataset (tabular data vs image data, number of features, etc.), algorithms that have performed well 
in a specific domain area (kidney disease/clinical use cases), and available computational resources (for 
example, deep learning algorithms require intense compute resources). 

Limitations of the ML models developed in this Project  
The project used USRDS data and it is possible that some of the factors affecting mortality in the first 90 
days of dialysis may be found in EHRs, which are not included in the USRDS data. Also, the 90-day 
mortality outcome was predicted using USRDS data available from patients on or prior to being diagnosed 
with ESKD/ESRDlxxvi, who progressed to ESKD/ESRD. This means that the ML models predicted an 
outcome conditional on ESKD/ESRD. In other words, the model is applicable only to those having 
ESKD/ESRD. Future extensions of this work could merge USRDS data with EHR data to be able to predict 
progression to ESKD/ESRD or incorporate patient-centered features from EHR data to better predict 
mortality in the first 90 days after dialysis initiation. 

Environment and speed 
Run time for hyperparameter tuning and for ML models differ with the type of ML algorithm and the number 
of hyperparameters selected. In this project, it was preferable for the non-imputed XGBoost and logistic 
regression models and necessary for the imputed XGBoost and multilayer perceptron models to provision 
high speed computing environments for the dataset and take advantage of parallel processing in order to 
complete the model hyperparameter tuning in a timely manner. Future researchers should consider 
algorithm run time when choosing the hyperparameters to be tuned, especially for tree-based models and 
neural nets which have large hyperparameter spaces. (For additional information, refer to Hyperparameter 
tuning under the Considerations section.) 

Class imbalance for the outcome variable 
Clinical data oftentimes have class imbalances such as what was observed in this Project where the positive 
class (patient who died) was 7.5% vs the negative class (patients who survived) was 92.5% in the selected 
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cohort size of 1,150,195. Neither logistic regression nor multilayer perceptron models perform well without 
additional tailoring when the outcome variable is imbalanced (or heavily skewed towards one outcome). 
Class imbalance was addressed in this Project through setting a model weighting parameter that applies a 
stronger penalty to the model when the minority class is incorrectly classified and a weaker penalty when 
the majority class is incorrectly classified. Balancing the data ensures that the models have sufficient data 
from both outcome classes (died vs. survived) on which to train. This results in a better trade-off between 
the model evaluation metrics of sensitivity and specificity. (For additional information, refer to Fairness 
assessment under the Considerations section.) Other ways to handle class imbalance that could be 
explored include: oversampling, undersampling, data augmentation via methods like synthetic minority 
oversampling technique (SMOTE)lxxvii, etc. 

Preprocessing data 
One-hot encoding the categorical variables is preferable to numeric encoding (casting categorical 
encodings as numeric) as it is a better numeric representation of ordinal variables. However, one-hot 
encoding increases the total number of variables in the training dataset which increases run time. For this 
reason, features with more than five categories should not be one-hot encoded.  

The approach used to handle missing values is dependent on the dataset and the features in the dataset. 
Clinical expertise is crucial in understanding the impact of missing values and whether or not they should 
be imputed, removed, or replaced. 

Standardization and scaling 
Standardization and scaling of numeric features allow for comparison of multiple features in different units 
and for the penalty (such as L1) to be applied more equally across the features. The model learns the 
importance of features better and faster when it is not overwhelmed by a feature with a much larger range 
than the others. It is important to keep the test dataset separate from the training dataset when scaling, 
otherwise the model obtains information from the test dataset which causes an invalid evaluation of the 
model. 

Hyperparameter tuning  
Consider running benchmark tests on a fewer number of iterations to gauge the run-time per iteration. 
Hyperparameter tuning in a model with a large hyperparameter space, such as for gradient boosted 
decision trees, can be computationally and time intensive. This approach allows the user to estimate the 
time to completion for the hyperparameter tuning script.  

Hyperparameter tuning for the non-imputed XGBoost model and the logistic regression model only required 
an instance with 65 GB of memory, whereas hyperparameter tuning for the imputed XGBoost model 
required more memory (192 GB). The number of cores (24) was also upgraded for the imputed XGBoost 
model which helped to improve the computation time. The model utilizes parallel processing which uses all 
available cores/CPUs. It took approximately five days to run the entire code for the Imputed XGBoost model. 

For the multilayer perceptron model, an environment with GPUs was utilized for tuning a large number of 
hyperparameters. If multiple cores or a GPU is not available, choosing only a few hyperparameters to tune 
at one time or using one imputed set of data to tune hyperparameters may be considered. These 
approaches reduced computational time while effectively tuning the parameters for the multilayer 
perceptron model. 
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For the imputed XGBoost model, Bayesian optimization was used to narrow down the hyperparameter 
ranges for a pooled approach to hyperparameter tuning. Using Bayesian optimization to limit the 
hyperparameter space reduced the time required to run a pooled approach for hyperparameter tuning for 
the imputed datasets. Using a random grid search on these narrowed hyperparameter ranges allowed the 
model prediction scores from each imputed dataset to be pooled for each hyperparameter combination. 
This produced one AUC and resulted in a much shorter compute time to identify the optimal 
hyperparameters. 

Model evaluation  
Different evaluation metrics can be chosen to determine the optimal set of hyperparameters, such as 
optimizing on precision-recall (PR) AUC or model calibration. The decision of the metric on which to 
optimize should be made in conjunction with clinical experts and will depend on the goal of the model. Due 
to the severe class imbalance (approximately 7.5 percent of patients died in the first 90 days), the Area 
under the ROC (receiver operating characteristic) curve (AUC ROC) tends to be high while recall (sensitivity 
or 'how many true positives did we get correct?') is low. It is well-known that PR AUC are more informative 
than AUC ROC plots when training a binary classification model on severely imbalanced data—based on 
this, the average precision metric from sklearnlxxviii was used in this project to tune hyperparameters for the 
logistic regression and multilayer perceptron models. It is important to obtain input from clinicians to 
understand what is most important to predict correctly when choosing a metric (more than one metric can 
be used in most libraries, e.g., tensorflow, sklearn). Future work in this area includes using reliability (or 
calibration) as the evaluation metric for maximum applicability to clinicians. [Examples of recommended 
questions to ask clinicians: Is it more important that we catch as many of the positive (died) class as possible 
(recall)? Is it more important that we minimize incorrectly classifying someone in the positive (died) class 
(precision)?] 

Using imputed datasets in ML modeling 
In this Project, each imputed dataset was used for modeling and the resulting model estimates were 
averaged as per Rubin’s rules as described in the Overview of ML Modeling Methodology section. The TEP 
suggested an alternative approach of averaging the imputed values across imputed datasets prior to 
performing ML model and suggested that in some settings it could improve model performance; however, 
this approach does not account for the increased variance resulting from missing data uncertainty and may 
result in underestimated standard errors and overly confident variable selections, thus was not used in the 
Project. 

Imputation assessment 
Model performance of the non-imputed XGBoost model fit and multiply-imputed XGBoost model fit were 
compared to determine if multiple imputations for the missing and out of bounds laboratory values present 
in USRDS data would improve the performance of the XGBoost model. The comparison demonstrated no 
difference in model performance between the imputed and the non-imputed XGBoost models. Future 
researchers can improve upon the imputation model by imputing features with methods that assume 
missing values that are missing not at random (MNAR) or even alternate missing a random assumptions 
that entail higher-order interactions and varying functional forms than those used by this Project, to assess 
impacts on prediction with a more complex imputation model. 
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Feature importance for MLP 
Feature importance for the multilayer perceptron model was not assessed as neural nets do not have pre-
defined feature ranking like XGBoost (gain, cover, etc.) or logistic regression (coefficients). Future work can 
determine feature importance for neural network models through a process called ablation, which is to run 
the model after selective removal of features to test feature importance. The features that cause the 
greatest decrease in accuracy would be the features that are the most important to the neural network 
model. 

Fairness assessment 
Performing a fairness assessment gives additional insight into how a model performs by different patient 
categories of interest (e.g., by age, sex, race, geographic localities in an alternate USRDS data pull, etc.). 
Future researchers should perform fairness assessments lxxix  to better evaluate model performance, 
especially for models that may be deployed in a clinical setting. Other methods of assessing fairness include 
evaluating true positives, sensitivity, positive predictive value, etc. These evaluation metrics better capture 
the fairness of the model across different categories of interest, especially for imbalanced outcome 
variables. Additionally, evaluating these metrics at various threshold across the different groups of interest 
would allow for the selection of a threshold that balances model performance across the groups of interest. 
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Recommendations for Supporting 
the Future Application of ML to 
Health, Health Care, and PCOR  
This Project was designed to generate foundational knowledge that would serve to advance AI/ML 
applications by future PCOR and health care researchers. This knowledge was captured throughout the 
course of the project as recommendations from two sources – the detailed input and considerations 
provided by the stakeholders assembled for this Project, specifically the TEP, and the experience and 
challenges encountered by the Project Team while building high-quality training datasets and ML models 
for the selected kidney disease use case.  

Many of the recommendations were incorporated into the Project during the preparation of the training 
datasets and ML modeling. Those that were not addressed in the Project due to various considerations 
including scope and schedule, are included below and fall into two categories:  

• Strategic industry-wide recommendations for broader application of AI/ML in PCOR 
and health care 

• Tactical, more pragmatic recommendations that can be implemented by other PCOR 
researchers to build upon the training datasets and ML models developed in this 
Project 

STRATEGIC RECOMMENDATIONS 
Recommendation 1: An industry-wide strategy is necessary to address the ongoing challenge of 
accessing data in a timely manner, specifically EHR data, for applying AI/ML to important clinical 
use cases that can significantly impact patient-provider decisions and advance PCOR.  

This project focused on building high-quality training datasets was initiated to address the specific challenge 
of the lack of high-quality training data from which to build and maintain AI applications in health, that was 
identified in the JASON report on Artificial Intelligence for Health and Health Careiii. The project constructed 
high-quality training datasets for the use case of predicting mortality in the first 90 days of dialysis using 
CMS clinical and claims data available from USRDS, the national registry for CKD and ESKD/ESRD 
patients.  

At project initiation attempts were made to obtain EHR data from various federal and private sources to 
address upstream clinical use cases that the TEP had prioritized for the project. These attempts were 
aborted as the estimated time required to obtain EHR data did not align with the overall project timeline due 
to the lengthy process of IRB approvals and establishing data use agreements. This led to the project 
pivoting to first selecting a data source that could provide timely data (i.e., USRDS) and then identifying a 
use case for preparing the high-quality training dataset. This experience highlights two issues with 
developing and advancing AI/ML applications for patient centered clinical decision support tools: 
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1. Institutional Review Board (IRB) approval requirements for accessing EHR data necessitates 
partnership with academic institutions: Sources that provide EHR data require approval from an 
IRB to ensure that the research plan is compliant with HIPAA and human subjects protections 
regulations. Most industry or private organizations do not have an IRB to review their research 
studies from a human subjects protections perspective and are required to partner with academic 
institutions. IRBs at these institutions are often overloaded with applications pending their review 
and approval; therefore, the time taken to obtain approvals must be taken into account when 
planning projects that use external data sources.  

2. Patient centered use cases must drive the selection of data sources and not vice versa: While there 
is growing evidence that clinical decision tools based on AI/ML applications have increasing utility 
and have the potential to exceed human predictive powerlxxx, the development of such patient-
centric tools can only be facilitated if the data necessary for addressing the use case is accessible 
by the broader research community without major data sharing obstacles (for example: requirement 
for IRB approval to access data, de-identification requirements imposed by IRBs especially when 
the data recipient is a HIPAA non-covered entity, challenges with merging data from multiple 
sources due to inconsistent data structure and formats, etc.)  

 
The issues surrounding access to data, specifically EHR, are well documentedlxxxi lxxxii lxxxiii

lxxxiv. Some agencies such as NIH, are making strides in 
adopting Findability, Accessibility, Interoperability, and Reusability (FAIR) principles to ensure 
federally funded registries and repositories are making the dat

lxxxv lxxxvi

lxxxvii lxxxviii lxxxix. This is encouraging 

, , . A 
report from a 2019 roundtable held by the Center for Open Data Enterprise (CODE) and the 
Office of Chief Technology at HHS that brought together stakeholders from across the 
government, industry, non-profits, and academia to discuss sharing and utilization of health data 
for AI highlighted the siloed and administrative hurdles to share data even among HHS agencies, 
with access to data taking up to 1.5 years

a accessible for meaningful use to 
qualified researchers. New approaches such as federated learning  and split learning  have 
been proposed that obviates the need for sharing or access to external data while enabling 
collaborative ML whereby multiple collaborators train the same model using their ‘own’ data to 
yield high-quality models. This approach still has privacy risks, as model parameters must be 
shared among the collaborators to some extent, which can potentially be used to help deduce 
characteristics of the training data. From a PCOR perspective, multiple recent studies have 
shown that most patients are willing to share data with health researchers provided adequate 
privacy and security protections are in place , , – for if the patients 
are willing to share their data, it behooves the researchers who are collecting patient data to also 
share within the bounds of appropriate privacy and security controls. Such controls could include 
role based accessxc and virtual data enclavexci among many other mechanisms. Data sharing 
must become common place within the health and clinical research ecosystem to address 
clinically compelling use cases that are patient-centric. It is imperative, therefore, that an industry-
wide strategy be developed to address the recurring barriers that exist today for accessing data in 
a timely manner and in turn promote reaping the full benefits from AI/ML for health.  

Recommendation 2: Ensure that a base set of widely used data elements such as demographics, clinical 
conditions and history, basic laboratory measures and values, clinical outcomes, etc. are captured 
comprehensively, completely, and accurately in national registries that serve as data sources for AI/ML 
applications  
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The quality of a training dataset is dictated by the quality of the source data used for preparing the training 
dataset. Critical training dataset features (variables) that are required to address the clinical use case 
employed for preparing prediction models need to be available, accurate and complete, in the source data 
files. As observed in this project, for the selected use case of predicting mortality in the first 90 days of 
dialysis, variables such as urine creatinine were not available, a high percent of lab values such as serum 
creatinine (approx. 20%) and albumin (approx. 35%) were missing, 0.5 percent to 2.3 were outliers, many 
of the core lab values had outliers, and duplicate observations (rows) and values (columns) were observed 
in the USRDS data files for the period of 2008—2017. Inconsistent formats for data and metadata were 
also noted—for example, MEDEVID data records comorbidities in two ways—one in the string COMORBID, 
the other in a list of categorical variables. These two sources do not agree perfectly with one another, so 
the training dataset incorporates both as data.  

It is well-known that data munging—cleaning and preparing the data to a usable format—accounts for as 
much as 60-80% of the time spent by data scientists during building machine learning models xciii. The 
missing or discrepant values are for laboratory data that are commonly collected and required to address 
most clinical research questions. Imputing missing and outlier values for such critical training dataset 
features can introduce subjectivity and bias and can lead to prediction models that are not translatable to 
real world situations. Ensuring that data sources store and share data that are of high quality for AI/ML 
applications will require funders of these repositories to establish quality requirements that data collectors 
and providers must adhere to, given the high degree of time and cost expended to retroactively clean the 
data for advanced analytics. Besides addressing the quality of data, such requirements must also include 
a base set of data elements that are relevant for both general and specialized repositories targeted for 
specific disease such as the USRDS. To the extent possible, the data stored in these repositories must be 
based on common data elements (CDEs) and terminology standards, and implementation of such a 
requirement is driven by how the data are collected. Health systems and clinical study investigators must 
consider using CDEs and standards right at the outset as they are planning the study and preparing data 
collection instruments. Use of such standard elements across health systems will contribute significantly to 
raising the quality of data and ensuring the development of more robust AI/ML applications. 

xcii,

 

Recommendation 3: Engagement and close collaboration between AI/ML practitioners and clinical domain 
experts with AI/ML understanding are critical when developing prediction models that could potentially be 
deployed to support provider-patient decisions.  

ML models that are patient-centered and have the potential to be deployed in the clinic as clinical decision 
support tools require input from clinical domain experts early and often. The goal of such intelligent tools is 
to augment clinical decisions and potentially standardize clinical care based on individual patient 
characteristics thereby enabling precision medicine. The CPMAITM methodology employed by this project 
(Figure 1) shows that the process starts with clinical research understanding to select the use case—this 
is an important step where the clinician is offering a dual perspective—in their caregiver role as well as of 
the patient who is at the center of the use case, validated by patient representative in TEP. Input from 
clinical domain experts is not a one-time event, however. Every subsequent step in the CPMAITM 
methodology is highly iterative where ML experts and clinical domain experts vet the development of the 
training dataset and ML model in the context of the real world and the machine world.  

Clinical domain experts from the Kidney Health Research Collaborative (KHRC) at UCSF for this project 
were instrumental in identifying a use case that could utilize the USRDS dataset, engineering features for 
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the training dataset, assisting with handling missing and outlier values for features relevant to the use case, 
and contextualizing and interpreting the results from ML modeling. Deployment to the clinic of ML based 
clinical decision support tools and continuous improvement of the tool even after deployment require buy 
in, not just from the clinicians who were involved in the development, but also from the broader physician 
base, which is yet another critical piece of engaging clinicians. While ML researchers working closely with 
clinical experts is critical, it is also important to take advantage of what an ML model may detect that is not 
already known clinically. Current work in AI/ML should pave the way for better understanding of purely data-
driven analytics, while also validating these results with clinical evidence and understanding. 

Effective collaboration with clinicians will require that they have a solid understanding of AI and ML and are 
able to translate the findings from modeling to a deployable tool. Currently, many of the clinicians are not 
adequately prepared to support AI/ML application development and will need to undergo additional trainings 
focused on data science methods and health informaticsxciv.  

Recommendation 4: A standardized framework with checklists and best practices for prediction modeling 
and standardized metrics for evaluating ML models for addressing clinical use cases that have the potential 
to be deployed in the clinic will further expand the applications of AI/ML in health care more broadly 

In conducting foundational work to facilitate future applications of AI/ML and enhance PCOR data 
infrastructure, this project employed the standard the CPMAITM methodology (Figure 1) widely used in the 
data science field. While this methodology helps to delineate the overall process for building training 
datasets and ML models, the exact requirements/specifications for each step along the process is not 
available and is subjective and varied among ML modelers. For example, a hotly debated field in ML is how 
to handle missing values and whether to impute or not impute—if the decision is made to impute the missing 
values (say because the chosen algorithm such as logistic regression or multilayer perceptron cannot have 
missing values in the dataset)—the question is which imputation method should be used. Subjectivity (and 
therefore bias), arises because the imputation method chosen can determine the predictive performance 
of the model; on the other hand, bias can enter when choosing not to impute if the probability of missingness 
depends in some way on other observable features. Subjectivity and variation are inherent at every step of 
the methodology for building the training dataset and ML model. A key byproduct of this subjectivity and 
variation is that while there are multiple prediction models that have been developed to-date, it is not 
possible to compare one model with the otherxcv. Performance metrics vary widely across studies and 
include AUC/ROC, AUC/PR, sensitivity, specificity, positive predictive value, etc., with no single standard 
metric that has been established to-date that can be applied across all models for a head-to-head 
comparisonxcvi. 

For this project, extensive research of the literature, discussions with AI/ML experts (specifically the TEP), 
and explorations of alternate methodology options were undertaken throughout the course of the project to 
determine the specifications for the training datasets and models that were developed. Many projects do 
not have the resources (cost and time) or the availability of a TEP. Developing clinical prediction models 
that can potentially be deployed to patient care would necessitate, and greatly benefit from, the 
development of a standardized ML framework with a comprehensive checklist of requirements and best 
practices along with consistent metrics for evaluating ML models. Examples of approaches for building such 
a framework include the Transparent Reporting of a multivariable prediction model for Individual Prognosis 
Or Diagnosis for ML (TRIPOD-ML)xcvii

xcviii
 and the more recently published 20 critical questions for TREE 

(transparency, reproducibility, ethics, and effectiveness)  in ML. The adoption of a standardized ML 
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framework across HHS agencies will pave the way for future PCOR and other researchers to advance AI 
for patient care in a more systematic and efficient manner  

TACTICAL RECOMMENDATIONS BASED ON PROJECT 
OUTPUTS 
Various stakeholders for this Project including the TEP, IA, ONC, and NIDDK provided recommendations 
for future work that builds off the current project – these are categorized into those relevant to the training 
dataset and those relevant to the ML models. 

Recommendations for future use of the training datasets  
Recommendation 1: Author a paper that demonstrates that the lack of access to EHR data is holding back 
the health care system and researchers in making improvements in early stage kidney disease care 

This recommendation was proposed by the TEP as a result of the challenges of accessing EHR data for 
clinical research questions related to early stage kidney diseases that were being considered for the Project. 
Performing the research and analysis and developing a white/scientific paper was out of scope for the 
Project. However, ONC in coordination with future researchers might consider authoring such a paper and 
developing recommendations to address more broadly the current limitations of the type of clinical research 
questions that can be studied stemming from the lack of access to EHR data.  

Recommendation 2: Integrate EHR data with USRDS data to address other compelling clinical use cases 

The scope of this current project focused solely on USRDS data for reasons discussed earlier but primarily 
due to the timely accessibility for performing the Project within the two-year period. EHR and other public 
and private data sources that were identified with the TEP include the Dialysis Outcomes and Practice 
Patterns Study (DOPPS), Nephrotic Syndrome Study Network (NEPTUNE), NIH’s All of Us, Kidney 
Precision Medicine Project, VA Million Veteran Program (MVP), FDA Adverse Event Reporting System 
(FAERS), and various patient registries. More recent data sources that could be considered include the 
National COVID Cohort Collaborative (N3C) and the Consortium for Clinical Characterization of COVID-19 
(4CE). Future researchers can integrate data from these sources with the data used for this Project from 
USRDS to expand the training datasets developed in this Project for other clinical use cases. 

Recommendation 3: Use the datasets from smaller studies (e.g., special studies) available in USRDS to 
create additional features for a more limited patient cohort.  

This Project aimed at preparing a training dataset with the broadest set of clinically relevant features for the 
use case of predicting mortality in the first 90 days of dialysis. Data from special studies in USRDS are 
limited to specific research questions such as the impact of dialysis dose on morbidity and mortality, and 
assessment of rehabilitation/quality of life/nutrition on dialysis patients. The data from these studies were 
therefore not used in this Project as it would have reduced the size of the patient cohort, without more 
elaborate approaches for handling missing data and other forms of selection bias. Based on the target use 
cases, future PCOR researchers could consider using data from these special studies in USRDS to build 
training datasets with appropriate clinically relevant features. 

Recommendation 4: Construct features relating to social determinants of health (e.g., area deprivation 
index (ADI), mean household income, etc.); use ADI as a control for latent socioeconomic factors as an 
unbiased way to incorporate location information.  

https://www.dopps.org/
https://www.neptune-study.org/
https://allofus.nih.gov/
https://www.kpmp.org/
https://www.kpmp.org/
https://www.research.va.gov/mvp/
https://fis.fda.gov/sense/app/d10be6bb-494e-4cd2-82e4-0135608ddc13/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
https://ncats.nih.gov/n3c
http://www.covidclinical.net/
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As a requirement from the IRB of record that provided the approval for obtaining access to USRDS data, 
the Project Team de-identified the data by removing geographic variables such as zip codes, FIPS codes 
(such de-identification requirement by certain IRBs is to be noted especially when project team members 
are from a HIPAA non-covered entity). ADI was therefore not included as a feature in the training datasets 
prepared in this Project. Future researchers may consider merging in location data found in the USRDS 
dataset with other variables of interest, such as ADI, and construct features relevant to social determinants 
of health; use of non-masked (offset) dates may also allow incorporation of time-trends in changes of these 
determinants longitudinally. Furthermore, using ADI as a control for latent socioeconomic factors may be 
an unbiased approach to incorporate location information as it evolves for each locality over time. 

Recommendation 5: Assess the impact of operational factors (nuisance variables not related to overall 
health on an individual basis) if present as features in the training dataset on the performance of the model. 

Operational factors, or nuisance variables, in the training dataset such as location, time of day the lab 
samples/results were prepared, day of a physician’s signature, etc., can lead to bias in the performance of 
the model if not generalizable in some way to subgroups of interest for the task at hand (as they may be 
for social determinants of health, system-level process improvement, and the like). Future researchers 
should take care to properly understand the relationship between potential operational factors and the 
outcome variable before including them as a feature in the training dataset. Two important considerations 
for future researchers when assessing operational factors include:  

• Identify true nuisance variables only after performing descriptive statistics of the data 
to look for patterns  

• Distinguish the role of location (and possibly time-within-location) as an important 
feature for social determinants of health vs an operational factor.  

Recommendation 6: Perform additional analysis that provides information on the inherent bias of the 
datasets, such as the differences between patient data captured in one database versus other data sources 
that capture the same variables for a patient but observe different distributions.  

Real world data often have inaccuracies between databases leading to different distributions of the same 
variables for the same patient. Since this Project only utilized data from one source (USRDS), relationship 
between different variables was not assessed. Future researchers with access to multiple databases could 
compare the data captured in each data source and discover relationships between different variables using 
ML modeling. 

Recommendation 7: Imputations can be used to enrich datasets but only after determining which 
imputation methods/rules are appropriate. 

Real world datasets used in health, health care, and PCOR research often contains missing data due to 
data collection errors, missing data, or unrecorded data elements, etc. As such, data imputations are an 
important tool used to enrich datasets with such missing values; however, researchers should validate that 
their missing data assumptions (i.e., missing completely at random—MCAR, missing at random—MAR, 
missing not at random—MNAR, etc.) fit the assumptions/requirements for the imputation methodologies 
that are being considered to ensure that the analytic results using imputed data are valid.  
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Recommendations for future use of the ML models 
Recommendation 1: Investigate performance of the ML models by examining predictions by site of 
service/facility, as systematic differences in how data is collected at various sites could potentially reduce 
model performance 

Systemic differences in data collection can bias the performance of ML models due to the quality of data 
collected at different sites, etc. Location-based features were not incorporated into the training dataset in 
this Project as location data was de-identified to comply with IRB requirements for data use. Future 
researchers could incorporate location data provided location information can be retained to analyze the 
impact of data collection on the ML models.  

Recommendation 2: Investigate performance of the ML models by examining the impact of different 
definitions of data elements on model sensitivity. 

Clinical variables can have slightly different definitions due to the units used for laboratory tests, the 
equation used to calculate values, etc. For example, two eGFR variables are provided in the USRDS data: 
one calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and one 
calculated using the Modification of Diet in Renal Disease (MDRD) Study equationxcix. (Note: for this Project, 
clinical experts recommended the use of the CKD-EPI eGFR variable based on their prior experience as it 
is more accurate.) Using one eGFR variable instead of the other could result in different model results. 
Future researchers could investigate the impact of differing definitions on the performance of the ML models 
(e.g., model sensitivity). 

Recommendation 3: With the same use case of predicting mortality in the first 90 days of dialysis, 
investigate 90-day mortality for those who switch dialysis modalities and use ML to calculate propensity 
scores to compare the groups.  

Switching dialysis modalities, such as from peritoneal dialysis to hemodialysis, is not a baseline 
characteristic known on or prior to dialysis start. Thus, the feature was not included in the training dataset 
prepared for the project. Future researchers working on a different use case could create this feature from 
the data in USRDS. 

Propensity score matching is used to estimate causal effects for observational data, whereas predictive ML 
modeling only predicts the outcome of interest. Future researchers could use approaches similar to 
Westreich et al. (2010)c to use ML for propensity score matching by age group, dialysis modality, etc.  

Recommendation 4: With the same use case of predicting mortality in the first 90 days of dialysis, 
investigate 90-day hospitalization outcome for the same study cohort as the current project (adults who 
have ESKD/ESRD incident years between 2008-2017 with valid dialysis start dates) 

The current use case predicts an outcome of mortality in the first 90 days of dialysis. Future researchers 
could also consider constructing an outcome variable of 90-day hospitalizations instead of mortality, in 
which case they would consider mortality prior to hospitalization as a competing risk for hospitalization. (For 
example, a Fine-Grayci competing risk model could be applied to the predictors selected by the ML model. 
A competing risk regression model could be appropriate when gauging risk by a sub-distribution hazard, as 
it corresponds with the non-parametric cumulative incidence function (preferred in clinical research to the 
Kaplan-Meier estimate), while other methods may be of more of interest if examining a cause-specific 
hazard when the cause of interest is subject to a competing risk.) 
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Recommendation 5: Investigate 90-day mortality with the same feature set as the current project but for a 
smaller cohort, such as narrowing the cohort to only patients who have pre-ESKD/ESRD Medicare claims 
data.  

The current study cohort includes all adult patients, even those who do not have pre-ESKD/ESRD Medicare 
claims data. Future researchers can future refine the cohort to only patients who have pre-ESKD/ESRD 
claims data for other use cases. 

Recommendation 6: Predicting kidney transplantation outcomes/who should be considered for kidney 
transplantation after dialysis initiation.  

Treatment options for ESKD/ESRD and their outcomes are oftentimes not properly communicated to 
patients diagnosed with ESKD/ESRD. Since kidney transplants tend to result in better long term outcomes, 
there is a push to move to increase kidney transplants as a treatment option. Future researchers can use 
resources from this project and USRDS data to investigate kidney transplant outcomes use case.  

Recommendation 7: Consider the non-linearity of the features for the logistic regression and multiple 
imputation models. 

Feature selection is an important part of training a statistical model, particularly logistic regression, or other 
univariate regression approaches such as those inherent to the MICE implementation for multiple 
imputation. The goal of this model was to provisionally test the high-quality training dataset using logistic 
regression with the features that were selected or created from the study dataset. There are additional 
steps that users can take to ensure that continuous features have a linear relationship with the dependent 
variable.  

Recommendation 8: Consider using F_beta score as an evaluation score for the models to adjust the 
weights of sensitivity and precision based on the clinical use case.  

F1 score, which equally weights sensitivity and precision, was used in this project. The beta should be 
chosen based on the use case and with clinician input. For example, if the prevalence of the interested 
outcome is unknown then specificity should be weighted more heavily than precision. 

Recommendation 9: Accounting for interactions terms (i.e., between race and age) as part of the ML 
models (and imputation models, preparing data for ML model fit) to better understand the relationships 
between variables. 

Accounting for interactions between two or more terms adds complexity to a model, especially when there 
are more than 100 features present. Given the objective of ML modeling in this Project was to provisionally 
test the high-quality training dataset using various algorithms within the Project’s scope and schedule, the 
decision was made to not perform the complex modeling required to address interaction of terms. Future 
researchers may address this by including interactions for a small selection of variables if the features and 
their interaction(s) is clinically relevant to the researchers. 
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Conclusion 
This project focused on building high-quality training datasets was initiated to address the specific challenge 
of the lack of high-quality training data from which to build and maintain AI applications in health, that was 
identified in the JASON report on Artificial Intelligence for Health and Health Careiii. Such training datasets 
contributes to the foundational work that will facilitate future applications of AI/ML and enhance PCOR data 
infrastructure. The project achieved its aim by constructing high-quality training datasets for a kidney 
specific use case of predicting mortality in the first 90 days of dialysis using CMS clinical and claims data 
available from USRDS, the national registry for CKD and ESKD/ESRD patients. From a patient-centered 
perspective, such ML models that predict mortality in the first 90 days could inform patient-provider joint 
clinical decisions on whether to initiate dialysis and if so, which type of dialysis to initiate. 

The criteria for high quality, the approach used for constructing, and the features selected for the training 
datasets were vetted with the TEP that was established for the project. Furthermore, three different types 
of machine learning algorithms—XGBoost, logistic regression and multilayer perceptron—were used to 
provisionally test the respective training datasets derived from the original high-quality full training dataset. 
Predictive performance of the ML models developed using the three algorithms demonstrated AUCs of 
0.826 (XGBoost, non-imputed), 0.827 (XGBoost, imputed), 0.812 (logistic regression) and 0.812 (multilayer 
perceptron). 

The top five features that were highly ranked in XGBoost and logistic regression models were age, whether 
the patient had inpatient stay claims, had received erythropoietin (EPO), the status of albumin, and the 
presence of arteriovenous fistula (AVF). The confusion matrix as well as prediction score categorizations, 
which is oftentimes more helpful to clinicians rather than the binary died (1) or survived (0) predictions, 
showed that the ML models developed in this project predicted survival more accurately than death. The 
fairness assessment performed using age, race, sex and initial dialysis modality demonstrated that 
XGBoost performs consistently across these categories (ranging from a low AUC of 0.798 to a high AUC 
of 0.840) whereas logistic regression and multilayer perceptron models are more variable (AUC between 
0.716 to 0.848) and show that the AUC decreases as age increases. 

Dissemination of the resources generated in the project, includes an Implementation Guide with detailed 
methodology and points to consider that future researchers can refer to for preparing training datasets and 
ML models for new kidney disease use cases, the code base available on ONC GitHub, and 
recommendations for future work provided by various stakeholders including the TEP. PCOR researchers 
can build off the foundational work completed through this project and stimulate the application of these 
methods to a wider array of use cases by PCOR researchers and advance the application of ML to enhance 
PCOR infrastructure.   
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Glossary & Acronyms 
GLOSSARY 

Term Definition 
Algorithm A procedure for solving a mathematical problem in a finite number of 

steps that frequently involves repetition of an operation. Current term 
of choice for a problem-solving procedure, algorithm, is commonly 
used nowadays for the set of rules a machine (and especially a 
computer) follows to achieve a particular goal.cii 

Artificial Intelligence (AI) A branch of computer science dealing with the simulation of intelligent 
behavior in computers; the capability of a machine to imitate 
intelligent human behavior.ciii 

Artificial neural network Computing systems vaguely inspired by the biological neural 
networks that constitute animal brains. An ANN is based on a 
collection of connected units or nodes called artificial neurons, which 
loosely model the neurons in a biological brain. Each connection, like 
the synapses in a biological brain, can transmit a signal to other 
neurons. An artificial neuron that receives a signal then processes it 
and can signal neurons connected to it. The "signal" at a connection 
is a real number, and the output of each neuron is computed by some 
non-linear function of the sum of its inputs.civ 

Area under the curve (AUC) An evaluation metric that considers all possible classification 
thresholds. The area under the receiver operating characteristic curve 
(AUC ROC) is the probability that a classifier will be more confident 
that a randomly chosen positive example is actually positive than that 
a randomly chosen negative example is positive.cv 

Common data element (CDE)  A common data element (CDE) refers to a data element that is 
common to multiple datasets across different studies, surveys, or 
registries. The intentional use of CDEs improves data quality and 
promotes data sharing.cvi 

Cross validation A mechanism for estimating how well a model will generalize to new 
data by testing the model against one or more non-overlapping data 
subsets withheld from the training set.cv  

Confusion Matrix A table with two rows and two columns that reports the number of 
true positives, true negatives, false positives, and false negatives. 
Each row of the matrix represents the instances in an actual class 
while each column represents the instances in a predicted class, or 
vice versa.cvii 

Electronic health record 
(EHR) 

An EHR is a digital version of a patient’s paper chart. EHRs are real-
time, patient-centered records that make information available 
instantly and securely to authorized users. While an EHR does 
contain the medical and treatment histories of patients, an EHR 
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Term Definition 
system is built to go beyond standard clinical data collected in a 
provider’s office and can be inclusive of a broader view of a patient’s 
care. One of the key features of an EHR is that health information can 
be created and managed by authorized providers in a digital format 
capable of being shared with other providers across more than one 
health care organization. EHRs are built to share 
information with 
other health care providers and organizations—such as laboratories, 
specialists, medical imaging facilities, pharmacies, emergency 
facilities, and school and workplace clinics—so they contain 
information from all clinicians involved in a patient’s care.cviii 

End Stage Kidney (Renal) 
Disease (ESKD/ESRD) 

A medical condition in which a person's kidneys cease functioning on 
a permanent basis leading to the need for a regular course of long-
term dialysis or a kidney transplant to maintain life.cix 

Feature An individual measurable property or characteristic of a phenomenon 
being observed. Choosing informative, discriminating and 
independent features is a crucial step for effective algorithms in 
pattern recognition, classification and regression.cx 

Hyperparameter The "knobs" that you tweak during successive runs of training a 
model. For example, learning rate is a hyperparameter.cv  

Machine Learning (ML) The process by which a computer is able to improve its own 
performance (as in analyzing image files) by continuously 
incorporating new data into an existing statistical model.cxi 

Model The representation of what a machine learning system has learned 
from the training data.cv 

Patient-Centered Outcomes 
Research (PCOR) 

PCOR compares the impact of two or more preventive, diagnostic, 
treatment, or health care delivery approaches on health outcomes, 
including those that are meaningful to patients.cxii 

Protected health information 
(PHI) 

The Privacy Rule protects all "individually identifiable health 
information" held or transmitted by a covered entity or its business 
associate, in any form or media, whether electronic, paper, or oral. 
The Privacy Rule calls this information "protected health 
information”.cxiii 

Personally identifiable 
information (PII) 

As defined in OMB Memorandum M-07-1616, PII refers to information 
that can be used to distinguish or trace an individual’s identity, either 
alone or when combined with other personal or identifying information 
that is linked or linkable to a specific individual.cxiv 

 

ACRONYMS 
Acronym Explanation 
ADI Area deprivation index 
AI Artificial intelligence 
ANN Artificial neural network 
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Acronym Explanation 
ASPE Assistant Secretary for Planning and Evaluation 
AUC Area under the curve 
AVF Arteriovenous fistula 
AVG Arteriovenous graft 
BMI Body Mass Index 
CDC Centers for Disease Control and Prevention 
CDEs Common data elements 
CKD Chronic kidney disease 
CMS Centers for Medicare & Medicaid Services 
CODE Center for Open Data Enterprise 
CPMAI Cognitive Project Management for Artificial Intelligence 
CRISP-DM Cross-Industry Standard Process for Data Mining 
CV Cross validation 
DOPPS The Dialysis Outcomes and Practice Patterns Study 
EHR Electronic health record 
EPO Erythropoietin 
ESKD End-stage kidney disease 
ESRD End Stage Renal Disease 
FAIR Findability, Accessibility, Interoperability, and Reusability 
FDA The United States Food and Drug Administration 
FIPS Federal Information Processing Standard Publication 
GFR-EPI Glomerular Filtration Rate Epidemiology Collaboration 
HH Home health 
HHS The Department of Health and Human Services 
HIPAA Health Insurance Portability and Accountability Act 
HS Hospice 
IA Interagency Assembly 
ICD International Classification of Diseases 
IP Inpatient 
IRB Institutional Review Board 
IT Information Technology 
KHRC Kidney Health Research Collaborative 
LR Logistic regression 
MAR Missing at random 
MEDEVID Medical Evidence 
MICE Multiple imputations by chained equations 
ML Machine learning 
MLP Multilayer perceptron 
MNAR Missing not at random 
MVP Million Veteran Program 
NIDDK National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 
NIH National Institutes of Health 
ONC Office of the National Coordinator for Health Information Technology 
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Acronym Explanation 
OP Outpatient 
PCOR Patient-centered outcomes research 
PCORTF PCOR Trust Fund 
PDIS Primary disease causing renal failure 
PHI Protected health information 
PII Personally identifiable information 
PMI Precision Medicine Initiative 
PMM Predictive mean matching 
PR Precision recall 
ROC Receiver operating characteristic 
SDOH Social determinants of health 
SGD Stochastic gradient descent 
SN Skilled nursing unit 
TEP Technical Expert Panel 
TREE Transparency, reproducibility, ethics, and effectiveness 
TRIPOD-ML Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis for ML 
TX Transplant 
UCSF University of California San Francisco 
USRDS The United States Renal Data System 
VA Veterans Affairs 
XGBoost eXtreme gradient boosting 
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Appendix 
R AND PYTHON LIBRARIES USED IN THE PROJECT 
Appendix Table 1: R libraries used in dataset creation 

R library name Version 
RPostgres 1.3.1 
DBI 1.1.1 
stringr 1.4.0 
haven 2.4.0 
readr 1.4.0 
lubridate 1.7.9.2 
dplyr 1.0.4 
magrittr 1.5 
tidyr 1.1.2 
sqldf 0.4-11 
RSQLite 2.2.3 
gsubfn 0.7 
proto 1.0.0 
readxl 1.3.1 
plyr 1.8.6 
mice 3.13.0 

 

Appendix Table 2: Python libraries used in preprocessing data 

Python Library Version 
psycopg2 2.8.6 
sqlalchemy 1.3.23 
numpy 1.19.4 
pandas 1.1.5 
matplotlib 3.3.3 
seaborn 0.11.1 

 

Appendix Table 3: R libraries used for XGBoost modeling 

R library Version 
RPostgres 1.3.1 
DBI 1.1.1 
dplyr 1.0.4 
tidyr 1.1.2 
skimr 2.1.2 
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R library Version 
data.table 1.14.0 
mltools 0.3.5 
readr 1.4.0 
stringr 1.4.0 
here 1.0.1 
rgenoud 5.8-3.0 
DiceKriging 1.5.8 
purrr 0.3.4 
mlrMBO 1.1.5 
mlr 2.18.0 
smoof 1.6.0.2 
checkmate 2.0.0 
ParamHelpers 1.14 
magrittr 1.5 
xgboost 1.3.2.1 
sqldf 0.4-11 
Matrix 1.2-18 
rBayesianOptimization 1.1.0 
rsample 0.0.9 
pROC 1.17.0.1 
openxlsx 4.2.3 

 

Appendix Table 4: Python libraries used for logistic regression model 

Python Library Version 
scikit-learn 0.24.1 
numpy 1.19.5 
pandas 1.1.5 
matplotlib 3.3.3 
seaborn 0.11.1 

 

Appendix Table 5: Python libraries used for multilayer perceptron model 

Python Library Version 
tensorflow 2.4.1 
scikit-learn 0.24.1 
numpy 1.19.5 
pandas 1.1.5 
matplotlib 3.3.3 
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ALTERNATE USE CASES CONSIDERED FOR THE PROJECT 
The following kidney disease use cases were considered and vetted with the TEP but were not selected 
for the Project. These are provided here for other researchers to consider for future AI/ML applications.  

1) Incident Chronic Kidney Disease (CKD) risk prediction: Identify patients at increased risk of 
CKD based on clinical and omics data 

• Benefit of ML: Prediction can be enhanced as ML uses all available data (geospatial, 
genomic) and includes non-causal pathways 

• Potential Data Sources: EHR data, medical claims tied to EHR data, genomic data 
tied to EHR data, All of Us Program, BioMed Program 

2) Imaging analytics: Conduct imaging analytics to improve diagnosis of kidney disease based on 
kidney biopsy tissue 

• Benefit of ML: Improved diagnosis of kidney disease by automatically analyzing 
images (e.g., biopsies, ultrasound data, etc.) 

• Potential Data Sources: NEPTUNE, TRIDENT (Transformative Research in Diabetic 
Nephropathy), H3Africa CKD, Kidney Precision Medicine Project 
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Resources 
The following resources generated in this Project are available: 

• Implementation Guide and Data Dictionary on the Project site 
• Codebase for training datasets and ML models on ONC GitHub 
• Project Webinar slides on the Project site 

https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
https://github.com/onc-healthit/2021PCOR-ML-AI
https://www.healthit.gov/topic/scientific-initiatives/pcor/machine-learning
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