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Abstract

Clinical repositories containing large amounts of biological, clinical, and administrative data are increasingly
becoming available as health care systems integrate patient information for research and utilization objectives.
To investigate the potential value of searching these databases for novel insights, we applied a new data mining
approach, HealthMiner�, to a large cohort of 667,000 inpatient and outpatient digital records from an academic
medical system. HealthMiner� approaches knowledge discovery using three unsupervised methods: CliniMiner�,
Predictive Analysis, and Pattern Discovery. The initial results from this study suggest that these approaches have
the potential to expand research capabilities through identification of potentially novel clinical disease associations.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Clinical data repository; Complex data sets; Large patient cohort; FANO; HealthMiner�; Search tools

∗ Corresponding author.
E-mail address: wak4b@virginia.edu (W.A. Knaus).

1 P.O. Box 800717, University of Virginia, Charlottesville, VA, 22908, USA.

0010-4825/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiomed.2005.08.003

http://www.intl.elsevierhealth.com/journals/cobm
mailto:wak4b@virginia.edu


2 Irene M. Mullins et al. / Computers in Biology and Medicine ( ) –

ARTICLE IN PRESS

1. Introduction

Like many academic health centers, the University of Virginia and its partner Virginia Commonwealth
University Health System have established, or are developing, Clinical Data Repositories (CDRs). CDRs
are large, usually relational, databases that receive a variety of clinical and administrative data from
primary electronic sources. These repositories collect comprehensive data on large patient cohorts, as-
sembled and stored over time, which not only permit these institutions to examine trends in utilization
and outcomes, but also to perform sophisticated quality assurance and medical management queries inde-
pendent from the systems that collect the data (laboratory, management systems, etc.) [1,2]. Despite the
breadth of stored information, which increasingly includes long-term outcome and associated biological
and genetic data, mining for potentially novel and useful biomedical associations in CDRs is a relatively
recent approach [3–6].

The term “data mining” often refers to search tools that originated in statistics, computer science, and
other non-biomedical disciplines [7]. Currently, the major use for data mining is to find associations
among variables that may be useful in future managerial decision making. For example, data mining
approaches have been applied extensively within the commercial and defense sectors where they have
reported associations as divergent as consumer marketing preferences [8] and corrosion potential for
civilian and military aircraft [9].

The application of non-hypothesis driven data mining approaches to high-dimensional medical informa-
tion may give rise to several problems. First, as with the data mining method chosen for this project, undi-
rected or unsupervised queries (meaning that no, or few, prior assumptions are made about the variables
that will correlate) may result in the creation of a combinatorial explosion. However, because this method
assumes no prior knowledge, it therefore has the potential to uncover previously unknown relationships.

In many problems outside of medicine, one can avoid the difficulty of unwieldy numbers of solutions by
deduction of correlations from just N(N − 1)/2 pairwise correlations or distance metrics. Applications
of this alternative approach depend on the nature of the system being investigated and its underlying
constraints and mechanisms. For example, the fact that A and B, B and C, or A and C are often associated
together does not allow one to deduce, on statistical grounds, that A, B, and C are never simultaneously
seen together. A degree of non-reducibility may hold for at least some of the 50 genomic and 10 lifestyle
and clinical history factors responsible for complex disease states, such as cardiovascular disease. Thus,
detection of meaningful biomedical correlations from CDRs will require the development of special
techniques and heuristics.

The second difficulty in mining CDR data is also a consequence of high dimensionality. Data for com-
plex relationships are usually sparse because they are thinly spread across many dimensions, and extensive
data are required to alleviate this problem. However, until quite recently, robust clinical record data have
not been available. Large electronic data repositories were not frequently housed at individual institutions
[10], much less across institutions in data-sharing consortiums [11]. It also has not been traditional for
biomedical research to be driven by the highly structured analyses that are typically attributed to data
mining approaches. There is, however, beginning support for the use of larger clinical data resources and,
more recently, non-hypothesis-driven research in the biomedical information sciences [12]. This interest
is generated both by the increasing availability of large clinical and integrated databases created by the
collection of data from routine patient encounters.
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Previous analyses using large clinical data sets have typically focused on specific treatment or disease
entities. Most have examined targeted treatment procedures: cesarean delivery rate (270,774 women)
[13], coronary artery bypass graft (CABG) surgery volume (267,089 procedures) [14], routine chem-
istry panel testing (438,180 people) [15], and patient care: cancer risk for non-aspirin NSAID users
(172,057 individuals) [16], preoperative beta-blocker use and mortality and morbidity following CABG
surgery (629,877 patients) [17], and incidence and mortality rate of acute (adult) respiratory distress
syndrome (ARDS) (2,501,147 screened discharges) [18], to name a few. These studies have several
factors in common: large sample size, clinical information source, and they support or build upon
pre-established hypotheses or defined research paradigms that use specific procedure or disease
data.

Clinical outcomes algorithms have also been applied to harness large health information databases
in order to generate models directly applicable to clinical treatment. These models have been used suc-
cessfully to create mortality risk assessments for adult [19–21] and pediatric [22] intensive care units.
Recently, however, knowledge discovery algorithms have been utilized [4,23,24] in an effort to limit the
inherent bias in a priori hypothesis assumptions that can be found in traditional clinical data analysis. In
addition, Bayesian networks, which use a graphical diagram to represent probabilistic knowledge [25],
have been used in healthcare as a method for pattern recognition and classification for disease management
[26–28]. Emerging from Bayesian integration, Robson recently formulated a more generalized theory of
expected information (or “Zeta Theory”) and application to the development of tools for the analysis and
mining of large clinical data sets [29,30].

The University of Virginia, Virginia Commonwealth University, and IBM Life Sciences formed a
collaboration designed to test and evaluate data mining approaches in large repositories of clinical,
and eventually integrated, biomedical data. As a first step, a 667,000 de-identified patient data set
was mined using unsupervised techniques from IBM’s HealthMiner� suite, which comprises (i) As-
sociation Analysis using FANO (now typically known as CliniMiner�), (ii) Predictive Analysis (PA)
using decision rule induction methods [31], and (iii) Pattern Discovery (PD) using THOTH. All three
approaches can be considered as distinct types of data mining based on separate data mining
philosophies.

FANO/CliniMiner� has been extensively revised for clinical applications, though general in approach,
and has “plug-in” components that address specific subject domains previously developed for the clinical
and biomedical domains. For example, CliniMiner� contains security features to maintain patient privacy.
Also, laboratory data values can be automatically converted to low, normal, and high ranges, while times
and dates are converted to universal decimal year time (e.g. 2003.4752827) to facilitate time-stamping of
clinical events and time series analysis. Because techniques (ii) and (iii) had not yet been fully completed
at the time of this study, the initial cleansing and preparation were performed with CliniMiner� and the
results for PA and PD are preliminary.

Our initial and limited goal was to test whether or not it is possible to search a large database of
electronic patient records and find novel correlations. This was done without prior selection or bias
toward the inclusion or exclusion of particular patient records so as to maximize the potential to lead to
novel and useful research hypotheses. In order to accomplish this, we also created an infrastructure that
complies with all Health Insurance, Portability, and Accountability (HIPAA) regulations, which were
designed to protect the privacy of personal health information [32].
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2. Materials and methods

2.1. Theoretical basis of data mining techniques

We have brought, for the first time, three related, but distinct, knowledge discovery tools from the
HealthMiner� suite to bear on a remarkably large data set of patient records. HealthMiner� is comprised
of three knowledge discovery tools designed to analyze a large dataset of patient records. The methods
used by each tool are related in that they are all unsupervised “Rule Discovery” techniques. Namely,
interesting relationships are sought and discovered without prior knowledge of what those relationships
might be, as opposed to directed queries or classical statistical tests of hypotheses.

The methods used in this analysis differ in that they pursue different goals in the construction and
treatment of the rules they discover. They may reasonably be described as representing three major types
of approaches used in the knowledge discovery field, excluding specialist areas, such as time series
analysis and cannot be further integrated at this time. None of these three should be considered as more
correct than the others.

2.1.1. Pattern Discovery/ THOTH
In the first step, THOTH (named after an Egyptian god who was credited with inventing writing, record

keeping, and medicine) begins with PD. Pattern Discovery seeks to enumerate all of the associations that
occur at least k times in the data. In the second step, the patterns are clustered based on distances computed
from the comparison of the lists of the individual patient records that match the patterns. These clusters find
patterns that identify the same lists of patients, and reflect underlying relationships between the parameters
shared by all of the patients marked by the patterns in each of the clusters. From the patterns in each of
the clusters, the third step constructs all of the possible enthymemes (if-then statements) consistent with
valid pattern pairs. These take a form such as IF A & B & C . . . & Y THEN Z, and are scored according
to the conditional probabilities P(Z|A, B, C, . . . Y, Z)=P(A, B, C, . . . Y, Z)/P (A, B, C, . . . Y), which
are estimated on a test or trial set for rules that were generated on a training set. Here, as in all three
methods, an event such as (A, B, C, . . ., Y, Z) is sometimes called a “complex,” “compound” or “conjoint”
event and is made up of (e.g. is a simultaneous occurrence in a record of) simple events (items, entries,
observations); events such as (A, B, C, . . ., Z) constitute the individual patterns from which enthymemes
are constructed. Since each cluster may have associated with it a number of enthymemes or rules, all of
the rules are related to each other in that they apply to the same patients and are common to the pathologies
the patients share.

2.1.2. Predictive analysis
Predictive analysis learns or generates decision rules from medical data using logical operations (in

disjunctive normal form) such as “Diastolic Blood > 100 AND Overweight IMPLIES High Risk of Heart
Attack”. When applied to a patient record, the terms of the rules are evaluated as true or false, using the
operators AND, OR, greater-than, and less-than. As a part of generating the rules, PA searches the full
universe of thresholds for numerical variables. Predictive Analysis designates each one of the variables
in the patient record as a goal for prediction. Using the remaining variables, it learns rules for each of
the goal variables from the sample training data, separating those patients who have the label from those
who do not (for example, cancer patients versus normals). The procedure for learning the decision rules
is “lightweight rule induction” [31]. Predictive Analysis evaluates, or scores, its decisions by testing on
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a completely independent set of patient records. For this analysis, 100,000 patient records were used
solely for evaluation. Predictive analysis solves a prediction problem (its rules must predict an outcome
on new data with a likelihood significantly greater than chance). It discriminates between the positive
and negative outcomes by rules that minimize false positive and false negative errors. Only rules that
can potentially predict the outcome are included in the search space. The method searches through many
possibilities, attempting to find the best ones in terms of predictive value, sensitivity, and specificity [33].
In this study, 112 variables existed and 112 problems were solved. When solvable, each solution resulted
in a small set of predictive rules for each outcome.

2.1.3. FANO/CliniMiner�

Association mining is concerned with whether the conjoint event (A, B, C,. . .) occurs more, or less,
than would be expected on a chance basis. If it occurs as much (within a pre-specified margin), then it is
not considered an interesting rule. The particular “Zeta Theory” approach used in CliniMiner� is both
recent and novel; Zeta Theory seeks to be a self-consistent theory of observations and data which has deep
roots in information theory, quantum mechanics, thermodynamics and, most importantly, number theory.
It focuses on expectations of (Fano mutual) information measures, these measures being related to the
natural log of the probability ratio P(A, B, C, . . .)/[P(A)P (B)P (C) . . .] (and hence measured in natural
units or “nats”). More precisely, the “estimate” used is � (s, o[A, B, C, . . .])− �(s, e[A, B, C, . . .]), where
� is the Incomplete Riemann Zeta function summed up to the value of the second (o or e) parameter,
and o and e are the observed and expected number of observations about conjoint event (A, B, C,. . .).
For increasing amounts of data, and s = 1, it converges to the log probability ratio; “estimate” is placed
in quotes not to indicate any poorness in estimation of this convergence, rather that this expression, in
terms of Zeta Functions, is more fundamental than the log probability ratio form. Importantly, at the other
extreme, information values for extreme zero occurrence cases of o = 0 and/or e = 0 are also calculable
and meaningful, so that a conjoint event which is not observed, but which statistically should have been, is
reported. The parameter s has considerable importance in the theory and method. Varying s values provides
both the ability to pre-estimate the chances of a hit while searching a database, and the ability to detect
and isolate the influence of errors, noise, approximations, and any probabilistic sampling component. The
above applies to qualitative data, but by taking a fuzzy set approach, multivariances between quantitative
data can also be processed and expressed as analogous rules by FANO/CliniMiner�.

2.1.4. Comparisons between the HealthMiner� methods
A comparison of the HealthMiner� methods highlights the differences in the types of questions ad-

dressed, and their relative strengths and weaknesses. One might argue that in some ways the CliniMiner�

mutual association measures, as used here, are more “atomic” in that, given the extensive output from
several rules, the other measures (PD, PA) can be estimated from them (by subtracting information for
simpler rules from more complex rules containing the simpler rules). If so, this might help to compare
output. In practice, however, this comparison is difficult because of the different concepts of reliability
and use of negative evidence built into the methods.

Pattern Discovery is built on a traditional pattern discovery foundation, and seeks patterns that exceed
a threshold. CliniMiner� seeks to identify relationships between variables through correlation, and then
computes a FANO mutual information index for the rules. CliniMiner� can deliver complicated rules
(of complexity greater than 4) if (a) Monte Carlo rather than exact sampling is used, or (b) provided that
data is numeric and has meaningful multivariance. In the latter case, it starts with the assumption that
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rules are so complex as to involve every parameter, and then removes poorly contributing parameters in a
data fitting process involving global minimization. If approach (a) is to be accurate, however, it requires
enormous amounts of data that increase dramatically with rule complexity.

Typically for qualitative data, PD tends to identify more complicated rules economically, and exhaus-
tively enumerates all of those that exceed the support threshold. However, PD suffers from a combinatorial
explosion in different ways than CliniMiner�. For example, the combinatorial effects of abundantly strong
correlations, such as in therapeutic drug cocktails, are difficult for CliniMiner� to efficiently compute in
that they lead to massive output and require additional set theory pruning algorithms, but are relatively
easy for PD. An advantage of CliniMiner� is that it is capable of identifying relationships that occur
with rates less than would be expected by chance, even if they never occur at all. Pattern Discovery
would require tracking not only conditions for particular values, but also all of their complement sets.
This would lead to combinatorial problems for PD. Otherwise, while PD can potentially pick up longer,
more complicated rules, this advantage is offset in the loss of the more rare events that score below the
threshold.

Unlike CliniMiner� and PD, PA is a form of outcome analysis. The rules predict the outcome of
a column from the conditions in all of the other columns with measures of false positives AND false
negatives, together with other joint measures of confidence. The algorithms that learn the rules are
therefore more constrained than CliniMiner� and PD. While all three methods produce rules that can be
evaluated as true or false, PA also constructs thresholds from the entire possible space of values. It also
shares the use of the training and test set methodology with PD.

2.2. Data assembly

The University of Virginia Department of Public Health Sciences built and compiled 667,000 indi-
vidual patient records (Human Investigation Committee protocol 10932) into a spreadsheet form (dating
from 1993-present), one row of 208 core columns per patient (query required 80 h for data extraction;
data compilation partially represented in Table 1). The UVA CDR is a comprehensive clinical and admin-
istrative relational (MySQL) data warehouse (30GB in size) that uses the Linux (Red Hat 9.0) operating
system on a Dell 400 MHz dual processor server. It contains laboratory, microbiologic, and other elec-
tronic data for over one million in- and outpatient visits at the University of Virginia Health System from
1992 forward, from admission to discharge [1,34].

Prior to inclusion, each record was de-identified according to HIPAA regulations. This required
the removal of 18 unique identifiers [32]. Thirty conditions (based on the ICD9-CM codes of [35])
(Table 2), 24 laboratory test categories (Table 3), 23 procedure groupings (Table 4), and 32 distinct med-
ications types (Table 4) were included in the analysis. Due to formatting requirements, time was omitted
as a variable in the patient records. For each laboratory test, the “First”, “Last”, “Average (Avg)”, and
“Total Count (Cnt)” values were initially extracted for each patient, however, because all four values were
highly consistent the first values were used in the analysis. These data were transferred (via file transfer
protocol [FTP]) to IBM researchers located in New York and Israel for processing.

2.3. Preparation

A previously assembled and experienced team of IBM researchers (the IBM HealthMiner� and MED-II
teams) explored and performed initial processing of the data for IBM, resulting in a lengthy spreadsheet of
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Table 1
Representative patient record compilation for analysis

PtID YOB G R S YOD D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18

1 1994 M W A 2000 N Y N Y N Y N N Y N N N N N N N N N
2 1923 F W D 1995 N Y N N N Y N N N N N N N N N N N Y

D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

N N N N N Y N N N N N N Y N N N N N N N N N N N
Y N Y N Y Y N Y N N N N N Y Y N N N N Y N Y N N

P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 HCTFirst HCTLast HCTAvg HCTCnt PLTFirst PLTLast

N N N N N N N N N N N 0 0 0 0 0 0
N N N N N N N N N N N 0 0 0 0 0 0

PLTAvg PLTCnt WBCFirst WBCLast WBCAvg WBCCnt GLUCFirst GLUCLast GLUCAvg GLUCCnt BUNFirst

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

BUNLast BUNAvg BUNCrit CALCMFirst Med1 Med2 Med3 Med4 Med5 Med6 Med7 Med8 Med9 Med10

0 0 0 0 1 2 0 26 9 3 10 3 1 6
0 0 0 0 1 1 0 0 3 1 1 10 1 1

Key: PtID = Patient identification number (randomized); YOB = Year of birth; YOD = Year of death; D1 = Diagnosis 1
(Comorbid condition, see Table 1); Px=Procedure grouping (see Table 4); HCT=Hematocrit; PLT=Platelet count; WBC=White
blood cell; GLUC = Blood glucose; BUN = Blood urea, nitrogen; CALCM = Calcium, Med = Medication (see Table 5).

triplet comparisons (representative example, Table 5). CliniMiner� was extensively involved in preparing
the data for use by all the data mining methods. All data, which were predominately in three states such
as yes/don’t know/no were converted to −1/0/ + 1. Laboratory data were converted to low, normal, and
high ranges, which were then converted to −1/0/ + 1, respectively.

The CliniMiner� program was run on a variety of Unix, Linux, and Windows systems. Substantial
progress could be made on a T40 1.6 GHz laptop with 1 gigabyte of RAM running for 24 h +. The query
mechanism for CliniMiner� was a full “seek all interesting rules” without bias. The PA program was
run on an Intel XEON 2.2 GHz CPU (512MB RAM) and took 90 min to complete. The PD program was
executed on 24 CPUs (450 MHz processors) and was completed in 45 min.

2.4. Formal rule and pattern extraction

As noted in Section 2.1, CliniMiner� was the primary tool used in these initial studies to cleanse the
data for the other two methods. The “rule” is the particular association A, B, C,. . .. FANO assesses the
extent to which Events (items, entries, properties) occur together more, or less, than would be expected
on a chance basis; rules were reported by CliniMiner� when there was mutual information content
greater than +0.5 nat or less than −0.5 nat (this threshold is adjustable). This means that reported rules
occurred e0.5 = 1.6487 . . . times more than expected or e0.5 = 1.6487 . . . times less than expected, where
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Table 2
Comorbid conditions included in the analysis

Description Number of patients

Congestive heart failure 28,054
Cardiac arrhythmias 43,795
Valvular disease 29,628
Pulmonary circulation disorder 7878
Peripheral vascular disorder 22,799
Hypertension 90,457
Paralysis 11,630
Other neurological 36,935
Chronic pulmonary disease 50,771
Diabetes, uncomplicated 37,135
Diabetes, complicated 12,456
Hypothyroidism 21,916
Renal failure 5323
Liver disease 12,985
Peptic ulcer disease (excluding bleeding) 8581
AIDS 1747
Lymphoma 6313
Metastatic cancer 11,873
Solid tumor without metastasis 49,000
Rheumatoid arthritis/ collagen vascular diseases 10,657
Coagulopathy 13,946
Obesity 21,772
Weight loss 20,689
Fluid and electrolyte disorders 37,227
Blood loss anemia 5157
Deficiency anemias 29,977
Alcohol abuse 15,240
Drug abuse 6331
Psychoses 27,109
Depression 30,116

e is the base of the natural logarithm (i.e. 2.718 . . .). In other words, the observed frequency differed
from expected by some 60%. However, attention focused on rules of approximately +1 nat and −1 nat
and stronger, which is a ratio of approximately 3:1. The Complexity of each such determined “rule”,
which is also reported (Tables 5A, 6), is the number of associating properties or simple events, such
as 5 for the conjoint event (A, B, C, D, E) there being in that example 5 symbols. CliniMiner� also
reports the observed and expected frequencies of abundance, from which the Information measures
are calculated.

Predictive Analysis produces measures of the significance of, and support for, each rule (Tables 5B, 7).
The Predictive Value (tp/[tp+fp]) represents the percentage that is correct when the rule is true. Sen-
sitivity (tp/[tp+fn]) is the percentage of total disease patients found when the rule is true. The Speci-
ficity (tn/[tn+fp]) is defined as the percentage of total non-disease patients found when the rule is false.



ARTICLE IN PRESS
Irene M. Mullins et al. / Computers in Biology and Medicine ( ) – 9

Table 3
Laboratory codes and description used in the analysis

Lab code Lab description Units

ALKP Alkaline phosphatase U/l
ALT Alanine aminotransferase (GPT) U/l
AST Aspartate aminotransferase (GOT) U/l
BUN Urea, nitrogen, blood mg/dl
CALCM Calcium mg/dl
CREAT Creatinine, blood serum mg/dl
GLUC Glucose, blood mg/dl
HCT Hematocrit %
K Potassium mmol/l
LDH Lactate dehydrogenase U/l
MG Magnesium mg/dl
NA Sodium mmol/l
PCO2 Carbon dioxide, partial pressure mmHg
PH Blood PH
PHOS Phosphorous mg/dl
PLT Platelets k/ul
PO2 Oxygen pressure mmHg
PTAV Prothrombin time s
PTINR Prothrombin time, INR s
PTTAV Partial thrombolplastin time s
TBIL Bilirubin-total, blood mg/dl
TP Protein, total g/dl
TSH Thyroid stimulating hormone uIU.ml
WBC White blood cell k/ul

Accuracy ([tp+tn]/[tp+tn+fp+fn]) is the percentage of correct decisions if the disease is predicted when the
rule is true and a non-disease is predicted when the rule is false. Finally, Prevalence ([tp+fp]/[tp+tn+fp+fn])
indicates the percentage of diseased patients in the total population.

Pattern discovery/THOTH quotes the observed number of times the rule is seen, the Fraction of con-
sequent given antecedent as a measure of P(A&B&C)/P (A&B) as a weight of the rule “If A & B then
C” (Tables 5C, 8). The validation of the data, described later, involves searches of PUBMED and other
sources for the occurrence of studies that include the simple events in relationship with each other. The
output of PD was filtered to restrict the number of items that enthymemes could contain in order to
facilitate database mining.

2.5. Rationality check

The data forms were mined by CliniMiner�, PA, and PD and the results were then examined manually
in order to locate less expected relationships and any apparent anomalies. We then attempted to verify
the resulting associations with existing medical knowledge in order to determine those that may be novel.
This was done using published standards (PUBMED�, Web of Science�, and PsycINFO�). PubMed�

was developed by the National Center for Biotechnology Information (NCBI) to provide access to
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Table 4
Procedure groupings (Px) and patient medications (Med) used in the analysis

Code Description Code Description

Px1 Diagnostic bronchoscopy and biopsy of bronchus Med 1 Lidocaine
Px2 Blood transfusion Med 2 Magnesium
Px3 Physical therapy exercises, manipulation, and other procedures Med 3 Famotidine
Px4 Upper gastrointestinal endoscopy, biopsy Med 4 Midazolam
Px5 Tracheoscopy and laryngoscopy with biopsy Med 5 Furosemide
Px6 Diagnostic cardiac catheterization, coronary arteriography Med 6 Morphine
Px7 Electrocardiogram Med 7 Heparin
Px8 Cancer chemotherapy Med 8 Dextrose
Px9 Lobectomy or pneumonectomy Med 9 Cefazolin
Px10 Enteral and parenteral nutrition Med 10 Dexamethasone
Px11 Respiratory intubation and mechanical ventilation Med 11 Albuterol
Px12 Hemodialysis Med 12 Ondansetron
Px13 Magnetic resonance imaging Med 13 Prednisone
Px14 Computerized axial tomography (CT) scan head Med 14 Diltiazem
Px15 Skin graft Med 15 Propofol
Px16 CT scan chest Med 16 Nitroglycerin
Px17 Diagnostic ultrasound of heart (echocardiogram) Med 17 Clindamycin
Px18 Colonoscopy and biopsy Med 18 Insulin
Px19 Diagnostic procedures on nose, mouth, pharynx Med 19 Cyclosporine
Px20 Tracheostomy, temporary and permanent Med 20 Omeprazole
Px21 Therapeutic radiology Med 21 Ciprofloxacin
Px22 Coronary artery bypass graft (CABG) Med 22 Metoprolol
Px23 Biopsy of liver Med 23 Warfarin

Med 24 Chemo-infusion
Med 25 Cortrimoxazole
Med 26 Chemo
Med 27 Digoxin
Med 28 Methylprednisolone
Med 29 Gentamicin
Med 30 Acyclovir
Med 31 Any Antibiotic
Med 32 Epo

biomedical literature citations, and includes MEDLINE� (dating 1966-present) and OLDMEDLINE�

(dating 1951–1965). MEDLINE� is the National Library of Medicine’s (USA) premier database covering
the fields of medicine, nursing, dentistry, veterinary medicine, the health care system, and the preclinical
sciences. MEDLINE� contains bibliographic information from over 4,800 biomedical journals published
in the United States and over 70 countries. The ISI Web of Science� (The Thomson Corporation) is a mul-
tidisciplinary collection of bibliographic material from over 8,600 scholarly journals (dating 1981–2004).
It is comprised of five databases: Science Citation Index ExpandedTM, Social Sciences Citation Index�,
Arts & Humanities Citation Index�, Index Chemicus�, and Current Chemical Reactions�. PsycINFO�

is a database produced by the American Psychological Association that contains more than 1900 titles of
psychological relevance (dating 1894-present).
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Table 5
Representative output from the three HealthMiner� algorithms

A. Representative FANO triplet data output

Info. Complexity Saw Expected Event 1 Event 2 Event 3

3.4 3 1565 51.54 BUNFirst(Urea_Nitrogen CREATFirst(CREATINE Renal failure:
_Blood_mg/dl: = > 0.7) _BLOOD_SERUM = > − 0.85

_mg/dl: = > 0.06
2.91 3 871 46.6 CREATFirst(CREATINE Diabetes_Complicated: Renal failure:

_BLOOD_SERUM_mg/dl: = > − 0.76 = > − 0.85
= > 0.06

2.84 3 774 44.61 BUNFirst(Urea_Nitrogen Diabetes_Complicated: Renal failure:
_Blood_mg/dl: = > 0.7 = > − 0.76 = > − 0.85

B. Representative Predictive Analysis output
Cardiac arrhythmias
[Congestive heart failure & age at diagnosis > 7.500]
OR [Rx:Digoxin & Rx:Nitroglycerin < 6.500]
Predictive value 68.04%
Sensitivity 52.46%
Specificity 95.78%
Accuracy 89.44%
Prevalence 14.62%

C. Representative Pattern Discovery output
% Cluster 30
0.830986 Gender = Male AND Cardiac_arrhythmias = Positive

AND Valvular_disease = Positive IMPLIES Race = White
0.741784 Gender = Male AND Cardiac arrhythmias = Positive

AND Valvular_disease = Positive IMPLIES Hypertension = Pos

Search strategies were conducted as directed by the instructions for each database: PubMed� http://www.
(ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html), Web of Science� (http://www.isinet.com/
tutorials/wos6/wos6tut5.html), and PsycINFO� (http://www.apa.org/psycinfo/training/apa.pdf). For most
of the searches, the Boolean operator “AND” was used to combine search terms (Tables 6–8). For the
PubMed� searches, we started with a three-term phrase, for example (cardiac arrhythmias) (respira-
tory tract diseases) (heart valve diseases) and used PubMed�’s Automatic Term Mapping to convert
it to ((“arrhythmia”[TIAB] NOT Medline[SB]) OR “arrhythmia” [MeSH Terms] OR cardiac arrhyth-
mias[Text Word]) AND (“respiratory tract diseases” [MeSH Terms] OR respiratory tract diseases[Text
Word]) AND (“heart valve diseases” [MeSH Terms] OR heart valve diseases [Text Word]) in order to
simultaneously increase the sensitivity and specificity of the search. We also chose key words that would
match the MeSH terms to the ICD-9 codes used in this study. For the PubMed searches, the search phrases
were enclosed in parentheses () in order to instruct processing as a unit and then incorporated into the
overall strategy (Tables 6–8).

http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html
http://www.isinet.com/tutorials/wos6/wos6tut5.html
http://www.isinet.com/tutorials/wos6/wos6tut5.html
http://www.apa.org/psycinfo/training/apa.pdf
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3. Results

3.1. CliniMiner� data trend characterization

Estimation of the percentages of “unknown”, “less well known”, and “established” biomedical knowl-
edge from the data rules was calculated using a representative equal probability sampling method
(EPSEM), Simple Random Sampling, with a sampling ratio of approximately one percent, hence 280
associations out of the total 27,764 triplets from the CliniMiner� output. Of that fraction, rules with
negative Information values and “<” Event signs were removed, leaving a total of 75 rules. Each of
the remaining triplet Event terms was submitted to PubMed� as previously described, and the results
were tabulated. Triplets with six or more citations were considered to be “well established”, one to five
were “less well known”, and zero were potentially “unknown”. Eighty-six percent of the rules (53%
well-established, 33% less well-known) were found in the scientific literature using PubMed�. Fourteen
percent of the triplet associations had zero citations in PubMed�, and were then further queried in the
Web of Science� and PsycINFO� databases (resulting in 0 citations).

3.2. CliniMiner�: medically-known correlations

A number of well-published medical correlations were found within the dataset, and a selected subset is
summarized in Table 6 . These triplet combinations include: alcohol abuse+drug abuse+AIDS [36]; alco-
hol abuse+depression+drug abuse [37,38]; and fluid and electrolyte disorders+AIDS+other neurological
[39,40].

3.3. CliniMiner�: data anomalies

We developed a string-matching code to find triplets with similar structure, where the first and second
components were exactly the same, while the third Event was slightly different in the direction of the 〈 or 〉
sign associated with each Event (Table 5A). For example, a strong correlation between age at diagnosis
(= < 56.46) and blood loss anemia (= >−0.87) was associated with both elevated (= >−0.37) and low
(= < 0.37) deficiency anemias. There existed 4085 pairs with such similarities, however, in approximately
970 pairs their Information scores indicated that one of them occurred more than expected (+) while the
other was less (−) than expected. Because of this, we believe that these potential “conflicts” are resolved,
leaving 3115 triplet rules (22% of the results) that remain unresolved under this scenario.

In addition, there was a tendency for the occurrence of peptic ulcer disease (= >−0.82) and psychoses
(= > − 0.62) with both obesity (= > − 0.69) and weight loss (= > − 0.52). These data may, however,
represent a real bifurcation in the patient population for these two disease profiles and were not considered
to be in conflict. For example, some patients with peptic ulcer disease and psychoses may respond to their
diseases by eating excessively, while others may consume too little.

3.4. CliniMiner�: medically “unknown” correlations- 3 examples

The following sets of triplet associations were manually crosschecked with the entire data set for
internal repetitions or conflicts and were verified not to be among the 22% of the previously described
results that were unresolved for conflict.
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Table 6
Selected CliniMiner results vs. search engine literature publications (— = no information)

CliniMiner� rule Search terms PubMed Web of Psych
results science INFO

results results

Alcohol_abuse: = > − 0.75; (alcohol-related disorders) (drug abuse) (AIDS) 343 — —
Drug_abuse: = > − 0.88; (TS = alcohol-related disorders) AND — 0 —
AIDS: = > − 0.97 (TS = drug abuse) AND (TS = AIDS)

Expected: 3; (exp ALCOHOLISM/ OR exp Alcoholic Psychosis/ — — 1
Saw: 47; OR exp Alcohol Intoxication/) AND (exp Drug
Complexity: 3; Dependency/ OR exp DRUGS/ OR drug dependence.mp.
Information: 2.6 OR exp OPIATES/) AND (exp Acquired Immune

Deficiency Syndrome/)

Alcohol_abuse: = > − 0.75; (Alcohol-related disorders) (Drug abuse) (Depression) 3467 — —
Depression: = > − 0.56; (TS = alcohol-related disorders) — 0 —

AND (TS = drug abuse) AND (TS = depression)
Drug_abuse: = > − 0.88 (Alcoholism/ or alcoholic psychosis/ or — — 12
Expected:61.85; Saw: 721; alcohol intoxication/) AND (exp Drug Dependency/ OR drug
Complexity:3, dependence.mp. OR exp OPIATES/
Information: 2.44 OR exp DRUGS/) AND (exp Dysthymic Disorder/ OR neurotic

depression.mp. OR depressive reaction.mp.)

Fluid_and_elctrolyte_disorders (Water-electrolyte imbalance OR acid-base 40 — —
: = > − 0.18; imbalance) (AIDS) (Neurological Disorders)
AIDs: = > − 0.97; (TS = water-electrolyte imbalance OR acid-base imbalance) — 0 —
Other_neurological: = > − 0.55 AND (TS = AIDS) AND (TS = Neurological Disorders)
Expected:39.15; (exp DEHYDRATION/ OR acidosis.mp. OR alkalosis.mp. — — 0
Saw: 99; OR exp POTASSIUM/ OR hyperkalemia.mp. OR
Complexity: 3; hypokalemia.mp. OR exp ELECTROLYTES/)
Information: 0.91 AND (exp PARKINSONISM/ OR huntington’s chorea.mp. or exp

Huntingtons Disease/ OR multiple sclerosis.mp. or exp
Multiple Sclerosis/ OR schilder’s disease.mp. OR exp
EPILEPSY/ OR nonconvulsive epilepsy.mp.)
AND (exp Acquired Immune Deficiency Syndrome/)

Paralysis: = > − 0.83; (Paralysis) (Peptic ulcer disease) (Renal failure) 3a — —
Peptic_ulcer_disease: = > −0.82; (TS = paralysis) AND (TS = peptic — 0 —
Renal_failure: = > − 0.85 ulcer disease) AND (TS = renal failure)
Expected = 21.07; (exp Gastrointestinal Ulcers/ or peptic ulcer disease.mp.) — — 0
Saw = 76, AND (exp Organ Transplantation/ or exp
Information = 1.26, Hemodialysis/ or renal failure.mp.)
Complexity = 3 AND (exp PARALYSIS/ or paralysis.mp.)

Paralysis: = > − 0.83; (Paralysis) (Peptic ulcer disease) 0 — —
Peptic_ulcer_disease: = > −0.82; (Rheumatoid arthritis)
Rheumatoid_arthritis_collagen (TS = paralysis) AND (TS = peptic ulcer disease) — 0 —
_vascular_disease: >−0.87 AND (TS = rheumatoid arthritis)
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Table 6 (continued)

CliniMiner� rule Search terms PubMed Web of Psych
results science INFO

results results

Expected = 18.61; (exp Gastrointestinal Ulcers/ or peptic ulcer disease.mp.) — — 0
Saw = 48, AND (exp Organ Transplantation/ or exp
Information = 0.93, Hemodialysis/ or renal failure.mp.)
Complexity = 3 AND (exp Rheumatoid Arthritis/ OR lupus.mp. or

exp LUPUS/)

Paralysis: = > − 0.83; (paralysis) (peptic ulcer disease) (psychotic disorders OR 0 — —
Peptic_ulcer_disease: => −0.82;
Psychoses: = > − 0.62 bipolar disorder OR schizophrenia OR paranoid disorders)
Expected = 55.42;
Saw = 166, (TS = paralysis) AND (TS = peptic ulcer disease) — 0 —
Information = 1.09, AND (TS = psychotic disorders OR
Complexity = 3 biopolar disorder OR schizophrenia

OR paranoid disorders)
(exp Gastrointestinal Ulcers/ or peptic ulcer disease.mp.) — — 0
AND (exp Organ Transplantation/ or exp
Hemodialysis/ or renal failure.mp.)
AND (schizophrenia.mp. OR exp Schizophrenia/ or
exp Psychosis/ or
psychotic disorders.mp. OR paranoid
disorders.mp. or exp “Paranoia (Psychosis)”/
OR bipolar disorder.mp. or exp Bipolar Disorder/)

aUpon review of the manuscripts, these articles were unrelated to the ICD-9 codes used in this study.

Paralysis/peptic ulcer disease/renal failure
A strong correlation (expected = 21.07, saw = 76, information = 1.26, complexity = 3) was observed

between paralysis (= > − 0.83), peptic ulcer disease (= > − 0.82), and renal failure (= > − 0.85). A
search of these three combined terms (paralysis) (peptic ulcer disease) (renal failure) using PubMed�

yielded three Refs. [41–43]; however, upon closer inspection these sources examined the impact of
surgical procedures on one or more of the three terms, but did not directly correlate the three together.
The Web of Science� did not yield any references. It should be noted that the clinical manifestations
of chronic renal failure are known to include congestive heart failure, weak bones, stomach ulcers, and
damage to the central nervous system (among a lengthy list of other symptoms) [44].

Paralysis/peptic ulcer disease/rheumatoid arthritis
The correlation between paralysis (= > − 0.83), peptic ulcer disease (= > − 0.82), and rheumatoid

arthritis (= >− 0.87) was strong (expected = 18.61, saw = 48, information = 0.93, complexity = 3). No
publications were found using the PubMed�, Web of Science�, or PsycINFO� databases (Table 6). The
association between peptic ulcer disease and rheumatoid arthritis alone is unremarkable given that the risk
of peptic ulcer formation with the use of NSAIDs for the relief of pain and inflammation of rheumatoid
arthritis [45] is well known. In addition, cervical spinal involvement in patients with rheumatoid arthritis
can result in quadriplegia [46].
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Paralysis/peptic ulcer disease/psychoses
A strong correlation (expected =55.42, saw =166, information =1.09, complexity =3) was observed

between paralysis (= >−0.83), peptic ulcer disease (= >−0.82), and psychoses (= >−0.62). A search
of these three combined terms using the PubMed�, Web of Science�, and PsycINFO� databases did
not yield any supporting references (Table 6). Previous work has reported an association between peptic
ulcer disease and organic psychoses as a result of drug therapy [47,48]. Alternatively, work examining
the effects of corticotropin therapy in multiple sclerosis (a disease that can lead to paresis and plegia)
found that both psychosis and ulcers were potential side effects of treatment [49].

3.5. Predictive analysis trend characterization

Estimation of the percentages of “unknown”, “less well known”, and “established” biomedical knowl-
edge for the PA algorithm was calculated as previously described. Given the small number of rules
generated using this method, a random sampling was unnecessary. Of the 120 rules examined, 73 (61%)
were established, 18 (15%) were less well known, and 29 (24%) were unkown in the published biomedical
literature.

3.6. Predictive analysis medically known correlations

A selected subset of PA rules that were found to be well known in the PubMed�, Web of Science�, and
PsycINFO� databases are included in Table 7 . They include: hypertension+renal failure+age at diag-
nosis [50,51], liver disease+biopsy of liver+total protein [52,53], and psychoses+drug abuse+depression
[54,55].

3.7. Predictive analysis medically unknown correlations—3 examples

Famotidine/midazolam/magnesium/any antibiotic
The correlation between prescription famotidine, prescription midazolam > 2.5, prescription magne-

sium, and any antibiotic > 1.500 was strong (predictive value: 73%, sensitivity: 52.25%, prevalence:
14.16%). Zero references were found (Table 7) using PubMed, Web of Science�, or PsycINFO�. It is
possible, however, that these terms are associated with the management of cancer pain [56]. For exam-
ple, antibiotics are used to relieve the pain associated with infections, famotidine for the prevention of
NSAID-related peptic ulceration, and midazolam for relief of anxiety accompanying pain [56].

Omeprazole/magnesium/liver disease
Prescription of both omeprazole and magnesium was associated with liver disease (predictive value:

65.41%, sensitivity: 7.34%, prevalence: 5.69%). No references were found for this association using
PubMed�, the Web of Science�, or PsychINFO� databases (Table 7). The association between omepra-
zole and liver disease is not entirely surprising, however, given that in rare instances liver disease has
been associated with omeprazole usage [57].

Albuterol/tracheostomy temporary and permanent/magnesium
A strong correlation between the prescription of albuterol and magnesium was associated with tempo-

rary and permanent tracheostomies (predictive value: 67.31%, sensitivity: 19.71%, prevalence: 11.82%).
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Table 7
Selected Predictive Analysis (PA) results vs. search engine literature publications (— = no information)

PA rule Search terms PubMed Web of Psych
results science INFO

results results

10. Hypertension (Hypertension) (Renal failure) (Age) 3382 — —
[Renal Failure & Age at (TS = hypertension) AND — 1094 —
diagnosis > 12.000]
Predictive Value: 75.17%; (TS = renal failure) AND (TS = age)
Sensitivity: 55.40%; (exp HYPERTENSION/ or exp — — 3
Specificity: 94.48%; ESSENTIAL HYPERTENSION/ or hypertension.mp.)
Accuracy: 85.42%; AND (exp Organ Transplantation/
Prevalence: 23.18% OR exp HEMODIALYSIS/ OR renal failure.mp.)

AND (age.mp.)

18. Liver Disease (Liver disease) (Biopsy of liver) (Total protein) 1299 — —
[Biopsy of liver & TPFirst
(PROTEIN TOTAL
g/dL) > − 0.500] (TS = liver disease) — 0 —
Predictive Value: 77.70%; AND (TS = biopsy of liver) AND (TS = total protein)
Sensitivity: 16.54%; (exp “Cirrhosis (Liver)”/ or exp Hepatitis/ — — 0
Specificity: 99.84%; or liver disease.mp.) AND (biopsy of liver.mp.)
Accuracy: 97.16%; AND (total protein.mp.)
Prevalence: 3.22%

33. Psychoses (Psychotic disorders OR bipolar disorder 1690 — —
[Drug abuse & Depression] OR schizophrenia OR paranoid disorders)
Predictive Value: 71.39%; (Drug abuse) (Depression)
Sensitivity: 9.14%; (TS = psychotic disorders OR TS = bipolar disorder — 129 —
Specificity: 99.67%; OR TS = schizophrenia OR TS = paranoid
Accuracy: 92.28%; disorders) AND (TS = drug abuse)
Prevalence: 8.16% AND (TS = depression)

(schizophrenia.mp. or exp SCHIZOPHRENIA/ — — 44
OR exp PSYCHOSIS/ OR psychotic
disorders.mp. OR paranoid disorders.mp.
or exp “Paranoia (Psychosis)”/ OR bipolar
disorder.mp. or exp Bipolar Disorder/)
AND (exp Opiates/ or exp Drug Dependency/
or exp Drugs/ or drug dependence.mp.)
AND (exp Dysthymic Disorder/ OR neurotic
depression.mp. ORdepressive reaction.mp.)

83. Rx: Famotidine (Famotidine) (Midazolam) (Magnesium) (Antibiotic) 0 — —
[Rx: Midazolam > 2.500 &
Rx: Magnesium & Rx: Any
Antibiotic > 1.500]
Predictive Value: 73.00%, (TS = midazolam) AND (TS = antibiotic) — 0 —
Sensitivity: 52.25%, AND (TS = magnesium) AND (TS = famotidine)
Accuracy: 90.50%, (exp MIDAZOLAM/ or midazolam.mp.) — — 0
Prevalence: 14.16%; AND (antibiotic.mp. or exp ANTIBIOTICS/)
Specificity: 96.81% AND (famotidine.mp.) AND

(exp MAGNESIUM/ or magnesium.mp.)
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Table 7 (continued)

PA rule Search terms PubMed Web of Psych
results science INFO

results results

91. Rx: Albuterol (Albuterol) (Tracheostomy) (Magnesium) 0 — —
[Tracheostomy temporary and permanent (TS = magnesium) AND (TS = albuterol) — 0 —
& Rx: Magnesium] AND (TS = tracheostomy)
Predictive Value: 67.31%; (albuterol.mp.) AND (tracheostomy.mp.) — — 0
Sensitivity: 19.71%; AND (exp MAGNESIUM/ or magnesium.mp.)
Specificity: 98.72%;
Accuracy: 89.38%;
Prevalence: 11.82%

100. Rx: Omeprazole (Omeprazole) (Magnesium) (Liver disease) 0 — —
[Rx: Magnesium > 13.500 & Liver Disease] (TS = magnesium) AND (TS = liver — 0 —
Predictive Value: 65.41%, disease) AND (TS = omeprazole)
Sensitivity: 7.34%, (exp MAGNESIUM/ or magnesium.mp.) — — 0
Specificity: 99.77%, AND (exp “Cirrhosis (Liver)”/ or exp Hepatitis/
Accuracy: 94.50%, or liver disease.mp.) AND (omeprazole.mp.)
Prevalence: 5.69%

This association has a potential clinical rationale given that albuterol is frequently used as a treatment
for patients with chronic pulmonary disease (who may also be candidates for tracheotomies). The asso-
ciation of magnesium with these two conditions may be related to an underlying impact on strength of
the respiratory musculature; weakness may lead to the need for mechanical ventilation support and tra-
cheotomy. No references were found, however, for this association using PubMed�, the Web of Science�,
or PsycINFO� databases (Table 7).

3.8. Pattern discovery data trend characterization

The rules generated by the PD program were examined for “unknown”, “less well known”, and
“established” biomedical knowledge, as described. One hundred rules were randomly examined, and
of those 75 were removed from consideration because they included negative information (i.e. low glu-
cose). The remaining 25 consisted of 6 (24%) well-known, 8 (32%) less well known, and 11 (44%)
unknown associations in the biomedical literature (Tables 5C, 8).

3.9. Pattern discovery: medically-known correlations

Three medically known associations were generated by PD, and verified as previously described, are
summarized in Table 8. They include: valvular disease+warfarin+cardiac arrhythmias [58,59]; cardiac
arrhythmias+valvular disease+echocardiogram+congestive heart failure [60,61], and congestive heart
failure+valvular disease+hypertension [62,63].
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3.10. Pattern discovery: medically-unknown correlations: 2 examples

Diabetes/physical therapy/head CT scan/fluid and electrolyte disorder
A strong correlation (fraction of consequent given antecedent: 0.71429, Type Score: 12) exists between

diabetes uncomplicated, physical therapy, head CT scans, and fluid and electrolyte disorder (Table 8);
however, no citations were found in the literature to support these associations.

Deficiency anemias/omeprazole/hypertension
The correlation between deficiency anemias, omeprazole, and hypertension was strong (fraction of con-

sequent given antecedent: 0.72, type score: 9) (Table 8), but zero references were found in the biomedical
literature to support this combination of terms. A strong association has, however, been reported between
iron deficiency anemia and long-term ingestion of omeprazole [64]. Additionally, experimental animal
models have demonstrated that maternal iron restriction during pregnancy causes hypertension in adult
offspring due to a deficit in nephron number [65].

4. Discussion

The use of large repositories of patient-specific biological, clinical, and associated administrative
data generated during the routine delivery of medical care has historically been limited to utilization
management, quality assurance, and more recently, disease management. Selected portions of these data
have also been incorporated into research protocols and studies, usually within disease or procedure-
specific retrospective or prospective studies. In general, however, the data generated through routine care
procedures have not been considered of sufficient quality and integrity to use as the sole and primary source
of data for clinical research, especially research examining new approaches to diagnosis or treatment,
including new pharmaceutical agents or devices.

With increasing reliance on primary electronic capture of a wide variety of clinical data, and increasingly
biological data, the quality and integrity of the resulting clinical repositories has improved. Large-scale
associations among a wider “population-based” repository of clinical and biological data that have no
a priori assumptions can facilitate in the generation of new hypotheses that may subsequently stimulate
confirmatory experimentation. This approach is attractive because it has the potential to generate new
insights into basic biological and applied clinical applications at a very low cost.

In this preliminary study, we examined a large clinical dataset using three distinct data mining ap-
proaches: CliniMiner�, Predictive Analysis, and Pattern Discovery. We found many correlations or “rules”
abstracted by the data that appear to be reflections of well-established medical associations, such as the
relationship between drug and alcohol abuse and AIDS. In the future, filtering tools could eliminate these
well-established associations. We then isolated an additional subset of associations that were confirmable
by references in the published scientific/clinical literature. The remainder of the reported associations can
be classified in a variety of ways; some appear novel and plausible, meaning that they have validity and
may be worthy of further investigation. For example, the novel reporting of psychoses and peptic ulcer
disease with paralysis may simply represent the association of three relatively severe conditions with one
prompting the subsequent development of the others. More interestingly, this association might point to
an underlying common inflammatory, autoimmune, or even infectious etiology.

We conclude from these results that unsupervised data mining of large clinical repositories is feasible.
The records used in this project were minimally processed and the categories chosen for inclusion were
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very limited subsets of more comprehensive data that are available. This greatly constrained the number
and complexity of the potential associations. None-the-less, these preliminary associations appear to
have potential utility. These results may also represent a first step toward the use of large quantities
of biological and clinical data as the basis for new approaches to scientific discovery and hypothesis
generation. We would emphasize, however, that much more work needs to be completed before such
efforts are widely implemented. In addition, medical reference databases may find it useful to require that
all authors explicity codify the clinical components of their work using standards such as the International
Classification of Diseases. This would greatly speed the automation of identifying potentially novel
associations between searches, like the ones presented here, with the medical literature.

Our team is currently expanding the size of the database used in this study and plans to extend its
components to include acute diagnoses, detailed pathology reports, and patient outcomes. These categories
should substantially expand the potential associations. We will also merge data from the VCU data
warehouse (for which we have a joint services agreement) to expand our existing patient cohort, and plan
to use new representation modifier capabilities, such as the Medical Language Extraction and Encoding
System (MedLEE). MedLEE is an application to extract, structure, and encode clinical information in
textual patient reports so that the data can be used by subsequent automated processes [66]. The application
of this technology will permit us to use the textual data contained within UVA’s CDR to be represented
in HL-7 and/or XML for further processing.

For filtering the data mining results through comparison with the existing biomedical literature, we
will employ tools, such as Collexis, that provide new capabilities to represent the relationships from full
text articles in a semantic network that then can be more directly compared to the data mining output.
Given a full set of documents, Collexis constructs a concept fingerprint of each document, which is then
stored in a catalog. The software reads the collection of fingerprints, and creates the associative concept
space (ACS); this is then stored in a database. The API browser visualizes the ACS models and is used to:
(i) input a seed term then output/find all related concepts, (ii) input concepts, output a path between them
(hypothesis testing), and (iii) retrieve references that support the found relationships [67]. Finally, we
hope to develop new methods to combine these two outputs, the associations from large data repositories
and new representations of biomedical knowledge, in ways that would more directly and efficiently lead
to the generation of new ideas.

5. Summary

This report provided the initial results from an unsupervised data mining search of 667,000 clin-
ical records that were compiled from an academic medical center data repository using a new data
mining approach, HealthMiner�. These data contained comprehensive demographic, socio-economic,
clinical, and in selected cases, biological and outcomes information. Our principal goal was to in-
vestigate the potential value of searching these databases, without bias, for novel biomedical
insights.

HealthMiner� consists of three clinical data mining tools: CliniMiner� (also referred to as FANO
in earlier publications), Predictive Analysis, and Pattern Discovery. These methods are related in that
they are unsupervised rule discovery techniques. The majority of rules generated for CliniMiner� and
Predictive Analysis represented well-established medical knowledge that could be directly confirmed
with reference to the biomedical literature. A minority of the associations reported were unknown to the
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published literature, however, and, upon further examination, may represent useful knowledge for hypoth-
esis generation and experimentation. For example, CliniMiner� identified a strong relationship between
the co-occurrence of paralysis+peptic ulcer+rheumatoid arthritis. Input of these combined terms into
three large, national reference databases yielded zero information regarding their relatedness, signifying
that this triplet association was a candidate for further academic consideration.

We conclude that it is feasible to combine and apply large-scale data mining search tools to complex
clinical datasets. Although much work remains to be accomplished to make this approach widely ap-
plicable, it holds promise as a potentially valuable alternative to traditional hypothesis-driven scientific
discovery. This effort may represent a first step in the development of a non-hypothesis driven approach
to scientific discovery based on information obtained from a large clinical data repository. We are cur-
rently collaborating with Virginia Commonwealth University to expand the scope and information of our
electronic patient records for continued knowledge discovery.
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