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Preface 

 This manuscript describes the rationale and overall system-side behavior of a 

near-term clinical genotyping information system (both DNA analysis and data 

management) involving an early implementation in pharmacogenomics and drug safety 

assurance. The challenges to implementing a successful clinical genotyping system are 

described, and how the benefits of a focused, near-term system for drug safety 

assessment overcome the logistical and operational challenges that perpetually hinder the 

development of a societal-scale clinical genotyping system. The long-term goal of 

implementing a drug safety program that utilizes genomic data is to improve patient care 

and safety while at the same time facilitating the movement of clinical genotyping from 

bench to bedside. The authors are established collaborators in genomic and 

pharmacological research, and are eager to contribute to the development of a successful 

clinical genotyping system. 

 



Introduction 

 The utilization of a patient’s genetic data to aid diagnostic and prognostic 

healthcare represents the ultimate achievement of 50 years of genomic research. The 

technology to recognize this vision has emerged, and continues to evolve. In the future, 

patient-specific genomic data will be derived before birth and include an exhaustive 

sampling of genomic information. This genetic data will be periodically updated 

throughout a patient’s lifetime on a tissue-specific basis in order to screen for genetic 

changes conferring age-related diseases. The patient’s genotypic data will further be 

integrated with dedicated databases/warehouses harboring genetically-linked health and 

adverse drug response risk that will be utilized at the point-of-care for patient-specific 

therapeutic interventions. Yet, the path to this future in genomic-based healthcare is 

obscured by several independent factors that must be recognized and overcome to fully 

exploit genomic content in human healthcare. The authors have identified the following 

categorical hindrances to a societal-scale implementation of clinical genomics: 

1) High-Throughput DNA Analysis Technology: Costs, Data Standards and 

Future Technologies. 

2) Information Management: Access, Security and System Structures. 

3) Genomics & Genetics Education: Physicians, Pharmacists, Nurses and 

Consumers. 

4) Point-of-Care Utilization of Genomics: Physician’s Office, Hospital, 

Pharmacy and Consumer. 

5) Capitalism & Pharmaceuticals: Risks and Returns on Investment in 

Genomic-based Laboratories and Information Systems. 

6) Electronic Health Record Management and Utilization. 

7) Translational Research: Establishing Linkages Between Allelic Information 

and Healthcare Outcomes. 

 



This RFI response discusses operational solutions to some of the issues listed above, and 

a summary of each issue is provided in the introduction. Many of these issues are 

addressed (directly or indirectly) later in the manuscript as near-term operational systems 

are described and rationalized. Ultimately the authors are interested in the many aspects 

of a implementation of a near-term system for clinical genotyping including (1) the 

information management system and data standards required for system implementation, 

(2) the interface between DNA analysis biotechnology and clinical genotyping 

information system, (3) the management of costs and opportunities to insure the success 

of a clinical genotyping system, (4) and the educational impact of the post-genome era on 

pharmacy students and other professions within healthcare. 

 

1) High-Throughput DNA Analysis Technology: Costs, Data Standards and Future 

Technologies. Certainly there are numerous analytical methods for DNA analysis that 

support both SNP (single nucleotide polymorphisms) discovery and SNP detection (SNP 

discovery and detection represent distinct analytical challenges that are not described in 

this manuscript), and competition within the biotechnology industry continues to advance 

these capabilities from all relevant perspectives (cost, throughput, data quality, ease-of-

use, etc.). Yet at the heart of a large-scale clinical genomics implementation is an 

information management system that can accommodate many different analysis methods 

(including new biotechnologies that will emerge in the future) through the development 

of a group of scalable data standards for genomic information. Although significant 

advances in biotechnology are occurring, the data standards for sharing genomic data will 

precede genotyping in the clinic. 

 



2) Information Management: Access, Security and System Structures. Included in this 

manuscript is the rationale for an information system that categorically separates SNP 

data relevant to drug safety from SNP data relevant to general health outcomes. The 

authors feel strongly that this distinction is key to implementation of a successful clinical 

genotyping system. By categorically separating SNPs relevant to drug safety from SNPs 

linked to other health outcomes and SNPs with no known linkages (it is recognized that 

there is some small overlap in this distinction), consumers can: (1) understand how their 

own genomic data is being utilized and gain trust in these systems, (2) indicate how their 

own genomic data is managed and who can gain access to these categorical data sets, and 

(3) provide a rationale for security that is dependent upon the category of the data. For 

example, drug safety data may be more easily accessed by worldwide healthcare 

institutions and pharmacies since these data may be needed in an emergency for an 

injured traveler. In contrast, other SNP categories are stored much more securely and are 

NOT shared across institutions. This concept assumes that consumers will be (1) able to 

control access to their genotypic information and (2) SNPs inherent to drug safety are far 

less likely to serve (or be abused) as indicators of general health for an individual. 

 

3) Genomics & Genetics Education: Physicians, Pharmacists, Nurses and Consumers. 

Given the very recent advances in human genomic knowledge and biotechnology 

methods, it is not feasible to assume that physicians, pharmacists, nurses, and other 

professionals within the healthcare industry harbor sufficient knowledge to translate raw 

genomic data to information relevant to health outcomes. This being said, the authors 

have made two conclusions regarding the near-term future of clinical genomics. First, 

essentially all genomic data will be filtered into categorical definitions and the known (or 



potential) impact of a given SNP will be presented to the healthcare professional 

(described below in Table 1).  For example, if a patient is prescribed a drug where an 

adverse response has been associated with one or more specific genotypes, then the 

patient’s electronic health record (EHR) will simply indicate that the patient is “at risk for 

an adverse response due to genomic information” and make a recommendation to choose 

an alternate drug (and provide an alternate drug if one is available) and/or reduce the dose 

of the drug.  This specific example, as well as many others, has recently been 

demonstrated in the clinical literature.  Drugs are metabolized endogenously by a series 

of enzymes collectively referred to as the cytochrome P-450 system.  These enzymes are 

further characterized into sub-groups named CYP1A1, CYP2D6, etc.  Meur et al., (2006) 

demonstrated that the metabolic activity and oral clearance of the immunosuppressant, 

sirolimus, is significantly decreased in patients with CYP3A5*3 single-nucleotide 

polymorphism and further suggested that prior dose adjustments should be made in 

patients with this SNP.  However, the technology for routinely implementing such a dose 

adjustment does not currently exist.  The goal of this RFI is to rectify this current short-

coming.  Secondly, the authors have concluded that the initial commercially-viable 

implementation of a clinical genomics system will involve drug safety issues and be 

administered through pharmacy prescription systems. This initial implementation of a 

pharmacogenomic system will utilize SNPs that have an established link to drug safety 

outcomes and therefore can include information-based guidance to patients harboring 

SNPs relevant to drug safety (i.e. decision support for both the physician and pharmacist), 

exploit a prescription/dispensing system that is already guided by an information system, 

and inherently does NOT involve SNPs poorly linked to disease risk and/or does not 

provide insight on how a physician or pharmacist should alter treatment. Furthermore, 



this near-term implementation will provide a cultural shift in pharmaceutical drug 

development whereby new drug indications can require genomic screening to ensure 

safety and efficacy, ultimately involving clinical drug development (phase I-IV) to be 

limited to patients with specific SNP genotypes to increase the overall safety and efficacy 

of new drug entities. 

 

4) Point-of-Care Utilization of Genomics: Physician’s Office, Hospital, Pharmacy and 

Consumer. This issue continues the rationale for a near-term implementation of clinical 

genomics in drug safety by allowing pharmacists to be the proprietors of genomic 

information and exploiting the interconnectivity of pharmacy information systems to 

allow access to patient genomic information across the country. As many more SNPs are 

ultimately derived for each patient, a more secure healthcare information system will 

include SNPs relevant to disease predisposition as they are established through 

translational research. As discussed later, the translational research that involves linking 

known SNPs to healthcare outcomes will be facilitated through the use of the near-term 

implementation genotyping system. 

 

5) Capitalism & Pharmaceuticals: Risks and Returns on Investment in Genomic-based 

Laboratories and Information Systems. The implementation of a drug safety clinical 

genomic system provides the best overall return on investment for the healthcare 

community in the near-term. This is because the system utilizes SNPs that have an 

established link to drug safety outcomes and therefore can include information-based 

guidance to patients that possess SNPs relevant to drug safety (i.e. decision support for 

both the physician and pharmacist), exploit a prescription/dispensing system that is 



already guided by an information system, and provide a cultural shift in pharmaceutical 

drug development whereby new drug indications can require genomic screening to 

increase the overall safety and efficacy of new drug entities. 

 

6) Electronic Health Record Management and Utilization. The utilization of an EHR is a 

very new concept in healthcare, and although the benefits of an information management 

system that utilizes EHRs is essentially well recognized, the implementation of EHR 

systems has not been widely successful to date. Therefore it may be too ambitious to 

assume that the inclusion of clinical genomic data in current EHR systems will be 

inherently successful. The authors feel that the overall usefulness and impact of 

genotypic information in the clinic (from both the consumer and healthcare provider 

perspective) must precede a wide-spread system implementation. This further rationalizes 

the system described below, where SNPs relevant to drug safety as utilized in the 

pharmacy (and pharmaceutical industry) represents the ideal introduction of genotypic 

information in our healthcare system. 

 

7) Translational Research: Establishing Linkages Between Allelic Information and 

Healthcare Outcomes. This logistical barrier to the overall impact of genotypic 

information in the clinic involves a disparity between discovering (or uncovering) 

linkages between known SNPs and human health, which requires a large collection of 

known SNPs from a wide variety of patients (including their health records within one or 

more data standards), and a method upon HOW to rationalize the collection of known 

SNPs from a wide variety of patients. In other words, statistically significant linkages 

between known SNPs and health outcomes can only be achieved if a large collection of 



SNPs from normal and ‘diseased’ patients is available for data mining. Furthermore, this 

requires that the disease-relevant information and other meta data types be available 

within data standard formats to allow for data mining, which is the fundamental structure 

of an EHR. The authors feel strongly that the near-term drug safety system that integrates 

known SNPs with prescription drug indications will facilitate the acquisition of many 

other known SNPs that are NOT relevant to drug safety for the purposes of 

epidemiological research. In other words, patients undergoing genotyping for drug safety 

will have the option (ideally with incentives) to be genotyped for thousands of other 

known SNPs within their own genome to facilitate health outcomes research, ultimately 

to benefit themselves and society. As discussed below, this will involve an anonymous 

contribution of SNP and EHR data to a specialized data management system dedicated to 

identifying SNP-based risk assessment through the discovery of statistically significant 

linkages to other health outcomes such as diabetes, cancer, mental disorders, age-related 

disorders, etc. This concept gives rise to an oversight committee that governs data mining 

and statistical methods to establish “accepted” links between SNPs and health outcomes, 

and “approves” new linkages as they are discovered, proven and published. 

 Data management can be viewed along two perspectives, where the overall 

concept of “informational hierarchy” is used to describe both data concepts and data 

schemas (moving left to right in Table 1), which then define levels of information access 

(privacy & security) and levels of bioinformatics knowledge (raw biotechnology data to 

DNA sequence to protein sequence to physiological effect). This informational hierarchy 

(Table 1) is also organized vertically (top to bottom) to depict data transformations from 

raw data (biotechnology and DNA analysis data) into usable information (bioinformatics) 

and comprehensible knowledge (impact on human health). 



 

Table 1. 

Information Hierarchy within a Clinical Genotyping Information System 

Conceptual 
Perspective 

Data Schema 
Perspective 

Access & Privacy 
Perspective 

Bioinformatics Perspective 

 
Data 

 

 
Physical Data 

 
Laboratory 

 
Raw Data (DNA) 

 
Information 

 

 
Conceptual Data 

Bioinformatics 
Statistics 

Epidemiology 

DNA Sequence 
Bioinformatics 

Genomics & Ontology 
 

Knowledge 
 

 
User View 

Healthcare 
Data Management 

Applications 

Protein Sequence 
Enzyme Biochemistry 
Receptor Biochemistry 

 
Comprehension 

 

 
Consumer View 

 
Patient 

Physiological Effect 
Impact on Healthcare 

 
 
 
 
CLINICAL GENOTYPING for DRUG SAFETY 

System-Wide Operations 

Patient-Controlled Access 

 The ethical concerns to genotyping in the clinic, which are also applicable to 

electronic health records in general, are essentially privacy and security. The benefits of 

incorporating genotyping (genetic information) in therapeutics and medicine are 

questioned when the risk of ‘information abuse’ is considered. For example, a patient 

may be unwilling to utilize the benefits of genotyping if they fear that their employer 

and/or insurance provider can utilize the same information to (accurately or inaccurately) 

predict the patient’s future health status. This dilemma involves both societal and genetic 

components. At the genetic level, the validity of extrapolative health assessment based 

solely on genotypic data has not been broadly established, and is limited to a few known 

genetic diseases. Therefore any long-term claims to health status for the majority of the 



population would be invalid at this point in time. Yet, it should be noted that the risk of 

adverse drug response based on known SNPs in drug metabolism enzymes has been 

established (see table 2), and represents the near-term benefit to clinical genotyping.  

Table 2*. 
Representative Drug Metabolizing Enzymes Associated with Adverse Drug Response 

 

CYP 
Family Allele Nucleotide 

Change 

Enzyme 
Activity 
Change 

Impact on 
AUC** 

Common Drugs 
Affected 

 
1A2 

 
CYP1A2*1C 

 
-3860 G>C 

 
Decreases 

 
(Nakajima, 

1999) 

 
Increases 

Aminophylline 
Betaxolol 
Caffeine 

Flutamide 
Propranolol 

 
2C9 

 
CYP2C9*3A 

 
1075 A>C 

 
Decreases 

 
(King, 
2004) 

 
Increases 

Amiodarone 
Carvedilol 
Fluoxetine 

Glimepiride 
Warfarin 

 
3A4 

 
CYP3A4*18A 

 
878 T>C 

 
Increases 

 
(Dai, 2001) 

 
Decreases 

Atorvastatin 
Carbamazepine 
Clarithromycin 

Diltiazem 
Losartan 

*This is not an exhaustive representation of known SNPs relevant to drug metabolism and safety, and only 
three representative CYP families, a single SNP example, and 5 potential drugs affected are presented in 
this table for conservation of space. **AUC is the area under the curve of a drug’s concentration in human 
plasma over time. 
 

Furthermore, it is important to note that the use of the term SNP (single nucleotide 

polymorphism) herein includes nucleotide base substitutions and single base 

deletions/substitutions within the human genome. In addition, knowledge of this 

predisposition does not represent association with other health risks. Thus knowledge of 

the risk of adverse drug response is a benefit to the patient, employer and insurance 

provider since overall healthcare costs would be minimized by avoiding adverse drug 

reactions. Allowing the patient to control external access to their genotypic data within 

this categorical distinction (e.g. “adverse drug response risk” data access = yes; “general 



health risk” data access = no) will positively contribute to the adoption and success of 

genotyping in the clinic (See figure 1), which is a natural artifact of utilizing the 

hierarchy described in Table 1 (above). 

 

Human Genotypic Database 

The genotypic data derived from large numbers of people and patients will be 

crucial to establishing new genetic links to health risk. In this paradigm, it is assumed that 

a large cohort of patients will be genotyped across thousands of known single nucleotide 

polymorphisms that include SNPs that have established links to the risk of adverse drug 

responses and disease, as well as SNPs that currently have no known association with 

human health outcomes. The discovery of one or more SNPs that is associated with a 

specific phenotype or disease risk requires that a large Human Genotypic Database 

(HGD) is derived from individual genotypic records, which includes all other aspects of 

their health records. For example, the discovery of SNPs that are linked with 

Patient’s 
EHR 

Patient’s 
Genotypic 

Record 

Pharmacy 
 

Insurance 
Provider 

 
Employer 

Figure 1. The patient controls outside access to genotypic data based on how the data is used 
(categorically). In this example, the patient has allowed access to SNP data corresponding to adverse 
drug response risk, yet prohibited access to SNP data known (or unknown) to be relevant to overall 
disease and general health risk. Note that the patient’s genotypic record is regularly updated with new 
genetic data from the RISK database, and the categorical limited access to the health record will allow 
access to new adverse drug response RISK data. 

Adverse Drug Response 

General Health Risk 



cardiovascular disease involves a statistical comparison of SNPs between a large group of 

patients experiencing cardiovascular disease and a large control (disease free) group. In 

practice, this involves the derivation of a HGD where the patient identifiers have been 

removed (achieving privacy through anonymity) that include both genotypic and overall 

health information for each person, which is a natural artifact of utilizing the hierarchy 

described in Table 1 (above). 

 

RISK Database 

 The incorporation of health “risk” data, which is the known risk associated with 

each SNP position, into a patient’s genotypic record must be temporary and periodically 

updated to reflect new discoveries and linkages. This dynamic component to the 

electronic health record reflects the fact that future discoveries may link known SNPs to 

one (or more) health outcomes, and in the absence of an updatable risk component a 

patient’s genotypic record will become outdated and thus underutilized. For example, a 

patient may have data on a specific genotype (SNP or set of SNPs, in a specific genomic 

location) that, to date has been considered benign and represents no known risk, yet new 

research findings have determined that the SNP constitutes some level of health risk. 

Therefore, the most recent date and method by which an individual patient genotypic 

record has been updated to insure (1) that the most timely genotypic risk and population 

frequency data has been incorporated into the record and (2) insure that outdated 

genotypic records are updated (this assumes an application automatically updates the 

record, and utilizes a time/date stamp to manage updates) (Figure 2). This notion of state 

is easily handled by the database in the information system. 



Figure 2. Example of the SNP-specific risk components of a patient’s genotypic data, 
and how it may change using updates that reflect new discoveries from linkage studies. 
Note that this figure is an amalgam of different data types to demonstrate the behavior of 
the system, and is NOT meant to represent how information is presented to the healthcare 
professional and/or patient. 
 
A. John Doe’s genotypic component of the EHR. 
[Patient_ID: John Doe] 
[Most Recent Update: 11/6/2008] 
[Most Recent Update Method: Genosoft 5.6] 
[Most Recent Update Source: NIH Human SnipRisk Database, release 263.2] 
{Genotype Data} 
[SNP Position: ID_1] [Zyg: A, A] [Popul_Freq: 22%] [Risk: Unknown] 
[SNP Position: ID_2] [Zyg: T, G] [Popul_Freq: 09%] [Risk: Unknown] 
[SNP Position: ID_3] [Zyg: C, C] [Popul_Freq: 78%] [Risk: Unknown] 
[SNP Position: ID_4] [Zyg: T, T] [Popul_Freq: 94%] [Risk: Unknown] 
[SNP Position: ID_5] [Zyg: G, G] [Popul_Freq: 48%] [Risk: Unknown] 
[SNP Position: ID_6] [Zyg: A, C] [Popul_Freq: 32%] [Risk: Cardio, LOW] 
[SNP Position: ID_7] [Zyg: C, T] [Popul_Freq: 70%] [Risk: Unknown] 
[SNP Position: ID_8] [Zyg: T, T] [Popul_Freq: 29%] [Risk: Unknown] 
. 
. 
. 
 

B. The EHR Update using the RISK database incorporating a new discovery at SNP 
Position “2”. In this example, SNP position “2” has been linked to an adverse drug 
response risk. 
[Patient_ID: John Doe] 
[Most Recent Update: 11/6/2008] 
[Most Recent Update Method: Genosoft 5.6] 
[Most Recent Update Source: NIH Human SnipRisk Database, release 263.2] 
{Genotype Data} 
[SNP Position: ID_1] [Zyg: A, A] [Popul_Freq: 22%] [Risk: Unknown] 
[SNP Position: ID_2] [Zyg: T, G] [Popul_Freq: 09%] [Risk: Drug, HIGH] 
[SNP Position: ID_3] [Zyg: C, C] [Popul_Freq: 78%] [Risk: Unknown] 
[SNP Position: ID_4] [Zyg: T, T] [Popul_Freq: 94%] [Risk: Unknown] 
[SNP Position: ID_5] [Zyg: G, G] [Popul_Freq: 48%] [Risk: Unknown] 
[SNP Position: ID_6] [Zyg: A, C] [Popul_Freq: 32%] [Risk: Cardio, LOW] 
[SNP Position: ID_7] [Zyg: C, T] [Popul_Freq: 70%] [Risk: Unknown] 
[SNP Position: ID_8] [Zyg: T, T] [Popul_Freq: 29%] [Risk: Unknown] 
. 
. 
. 
 

Clearly the management of a genotypic RISK database becomes useful as the central 

source for determining SNP-specific risk will be managed separately and must be subject 

to scientific and regulatory oversight. This genotypic risk database will include all known 



SNPs, and their known frequency within the population in the human genome along with 

all known health risk information associated with each SNP. 

 

Genotypic Testing Considerations 

The deployment of genotyping technology in the clinic requires that results from 

laboratory tests (regardless of the genetic assay platform) be effectively managed for the 

benefit of patients and the general population. Unlike most laboratory tests used in the 

clinic, the results of genotyping tests must be stored in a patient-specific database (utilize 

patient identifier) due to the large number of potential data points (SNPs) from a single 

test, as well as contribute to population-scale database (anonymous identifier). Clearly, 

the first application of genotyping technology is aimed at surveying drug metabolism 

enzymes to identify patients that are deficient in drug metabolism activity, which 

leverages knowledge that specific SNPs are known to confer this phenotype and testing 

will be limited to these SNPs. The overarching logic to this approach is that a specific 

SNP is first associated with a clinically-relevant phenotype, and then deployed as a 

clinical test. Yet the association of known SNPs with clinically-relevant phenotypes can 

(and must) also be determined retrospectively. The population-scale database will reflect 

the growth of both the number of patients (people) contributing genotype database, and 

the number of SNPs assayed from each person’s genome, and ultimately represent a 

resource linking genetics with public health informatics. In this approach a collection of 

known SNPs is assayed and stored in a population-scale database, which also includes 

(anonymous) data from the patient’s healthcare record. This provides a resource 

(database) to discover linkage between specific SNP(s) and clinically-relevant 

phenotypes, ultimately linking genotypic data to specific phenotypes.  



 The data captured from clinical genotyping must include patient identification, 

genotypic data, and other aspects associated with patient-specific sampling, but also 

accommodate the integration genotypic data not collected in earlier genotyping tests, 

information about the testing method, quality control data, as well as the emergence of 

new technologies involved in testing and data management. Finally, the data must be 

integrated with a supporting (dynamic) database system that communicates health risks 

associated with each genotype. Given that the emergence of disease and drug adversity 

risk with each genotype may be dependent on other genotypic/phenotypic factors, or may 

simply not yet be known or fully understood, the conversion of genotypic data to health 

risk must be separate from the patient genotypic data record. The following is a list of 

data requirements for the genotypic data record; 

1) Patient Identifier 
2) Sample Source/Tissue 
3) Age of Patient at Sampling 
4) Genotypic Data 
5) Genotyping/Laboratory Method 
6) Quality Control Method 
7) Ethnicity, Gender and Existing Genetic Considerations 
8) Most Recent Date (and Method) of RISK Data Integration 

 
In addition to the patient’s identifier, data must include the source of the genetic material 

being tested (#2). Potential genetic factors may be tissue specific, such as genetic 

variability associated with oncogenesis (e.g. normal tissue vs. cancerous tissue), which 

are certainly crucial, if not the motive, for genotyping. In addition, contaminating genetic 

material (e.g. bacterial, contaminating human genetic material) may be present in skin 

samples or mucosal secretions may be considered as a component of the quality control 

methods (#6), and can be captured in the sample source data. Additionally, the age of the 

patient is needed for genotypic comparisons made for the patient later in life (#3). As 



mentioned earlier, many methods for genotyping already exist and the emergence of new 

technologies in this arena is certain. Therefore the method used for a specific data 

collection/test must be captured, as well as the testing laboratory, personnel involved, and 

any other relevant information about the location and technology employed. The methods 

employed to insure the sample and the laboratory test was performed correctly will 

contribute to a quality control determination, and will utilize both genomic sequence and 

assay standards added to the sample under investigation. Knowledge of an existing 

genetic condition, such as trisomy 21, will result in triploid data (rather than the expected 

diploid data) for all genotypic data derived from genetic material on chromosome 21. 

Finally, given the proposed paradigm that allows the genotypic record to be updated with 

new risk information, the date of the most recent comparison between the patient’s 

genotypic record and the risk database must be stored (in the patient’s record) to insure 

risk assessment is based on all data available (#8). 

 

Genotypic Data Standards and Data Sources 

 The data relevant to a patient’s genotype will include nucleotide base 

identification and zygosity at each SNP position, and could include flanking genomic 

sequence information (depending upon the technology employed). For example, using 

DNA microarray technology for genotypic screening will be essentially limited to 

homozygous or heterozygous data for a given SNP position, while genotypic data derived 

from direct DNA sequencing will provide potentially hundreds of bases of DNA flanking 

one or more SNPs, which represents a large string of DNA sequence that can be captured. 

The genotypic data capture must be recognized within the context of the technology or 



method utilized, and the method or technology utilized must be identified within the 

genotypic data record (see Figure 3). 

 

 

 
 

Patient’s 
EHR 

Patient’s 
Genotypic 

Record 

DNA Labs 
Patient ID 

Sample 
Source/Tissue 
Age of Patient 

Quality Control 

DNA Labs (Technology) 
Patient ID 

Sample Source/Tissue 
Age of Patient 

Quality Control 
DNA Analysis Method 

Quality Control 
All Test Results 

Patient’s 
Genotypic Data: 

Processing 
And Formatting 

Genotyping 
Lab Request 

Patient’s DNA 
Source 

Sample & Age 

Patient’s 
DNA Sample 
Enters Testing 
Queue 

All Genotyping Lab Results 

Updates 
Patient’s 
Genotypic 
Record 

CLINICAL 
LABORATORY 

CLINICAL LABORATORY 

Figure 3.  
To accommodate the diverse technologies capable of supporting 
genotyping, data flowing out the clinical DNA laboratory will 
include (1) data processing to remove data that is not relevant to 
the patient’s genotypic record and (2) formatting to adhere to data 
storage and security standards. 



This is not meant to infer that any given method is more sensitive or specific, but rather 

that results are sometimes technology or method dependent. This is somewhat analogous 

to the utilization of positron emission tomography (PET) and magnetic resonance 

imaging (MRI), where results from both tests provide similar insight into the phenotype 

(phenomena), yet the actual laboratory results are derived from distinct methods. In the 

case of DNA sequencing, or genotypic data derived from more data rich sources, the 

DNA sequence data must be pared down to the SNP(s) that are present (maintained) in 

the database of risk linkages. Thus the method of genotyping includes both a categorical 

description of the biotechnology component (in this case, capillary electrophoresis) and a 

raw data analysis component (conversion of fluorescent-specific peaks to DNA sequence, 

and elimination of DNA sequence that does not constitute SNP data). Instances where a 

given patient harbors a rare genetic condition that is not amenable to SNP-level data must 

be considered as additional information of the patient, and not a component of a system-

wide genotypic data record format. 

 

Genotypic Information System 

 The general architecture of the clinical genotyping information system is 

represented in figure 4. The process of DNA testing is described in Figure 3, ultimately 

deriving or updating patient-specific genotypic data. Once the patient’s record has been 

updated, the data is available for contribution to the Human Genotypic Database (HGD). 

As mentioned earlier, the HGD represents a key source for human genetic research 

capable of establishing new levels of risk to all known SNPs.  



Figure 4. System-wide integration of the patient’s EHR and its genotypic components, 

the Human Genotypic Database, research activities, the RISK Database, and the Internet. 
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In addition, once the patient’s record has been updated the system accesses the RISK 

database to determine if the patient’s updated SNP profile includes specific genotypes 

associated with a known health risk. Some level of overall health risk will be established, 

which will likely include categorical classifiers such as either “common” (benign or 

unknown risk), “drug” (adverse drug risk) or “health concern” (some level of overall 

health risk). These categorical definitions of risk will likely have a simple quantitative 

component (e.g. low, moderate or high risk) that will be used by the clinical system to 

flag the attention of healthcare workers and other system components.  

 

Conclusions 

Many factors will influence if and how people will derive their genotypic 

information including: genotyping test costs, privacy and ethics, as well as the overall 

cost-benefit of genotyping information. The cost-benefit of genotypic information is 

dependent upon the rigor of predicting clinically-relevant phenotypic traits based on SNP 

data. Definitive genetic testing may be tenuous given that every nucleotide in the genome 

is (theoretically) subject to variance, yet the current strategies for genetic testing are 

limited to testing for the most common mutations that are known to confer a health risk. 

For example, there are over 900 mutations in the human genome shown to cause cystic 

fibrosis (CF), yet most genetic testing laboratories limit their testing to the 6 most 

common mutations, and have predictive success rate of 90% in Caucasians (Gregg, 

2002). Using current genetic testing systems, it is not feasible to test for all known 

mutations that cause CF given (1) the benefit of predicting or diagnosing CF from a 

genetic test does not justify the costs associated with testing hundreds of known 

mutations from a patient’s sample, and (2) that there is a chance that a (rare) specific 



polymorphism, which has not yet been characterized, can cause CF and would not be 

detected in a large-scale genetic testing screen. It can be expected that any genotyping 

strategy will be sensitive to false-negative results given that rare SNPs that are not tested 

under a given genotyping screen may confer a health risk phenotype. 

 Deriving sufficient patient information for a large-scale clinical genotyping 

system will initially involve a large population of patients with mature healthcare records 

that contain information regarding age-related conditions and diseases, where patient-

specific genomic information can be added upon sampling/testing. Ideally, a near-term 

implementation of clinical genotyping will involve the addition of patient-specific 

genomic data to an existing healthcare information management system. Certainly there 

are many established healthcare groups and systems that are well positioned to benefit 

from the proposed near-term clinical genomics systems, and partnering with one or more 

of these groups will both (1) leverage the data and resources inherent to that system and 

(2) reduce implementation costs by reducing system redundancies. For example, the 

Veterans Administration (VA) hospital’s healthcare information management system 

allows for patients to be screened for drug-drug interactions, patient allergies, past 

medical history etc.  Incorporation of the genomic data base into this type of healthcare 

information management system would allow pharmacists point of care access to genetic 

information that will be beneficial in making therapeutic decisions.  The VA system 

further has a limited drug formulary and a captive patient population that lends itself well 

to beta-testing the clinical genomic system.  By starting with a small population, we can 

then move to the large-scale clinical genomic system to be implemented not only in 

hospitals but other pharmacy practice settings.  In conclusion, the implementation of a 

drug safety program that utilizes genomic data to improve patient care and safety while 



at the same time facilitating the movement of clinical genotyping from bench to bedside 

will improve general healthcare outcomes. 
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